发表于2025-05-05
Python机器学习实践:测试驱动的开发方法 pdf epub mobi txt 电子书 下载
本书一开始就立足于软件编写、算法测试的实践指导,为读者理解示例代码、动手编写自己的程序做必要的铺垫。
然后,作者才开始简明扼要地介绍机器学习算法的定义,以及读者必须知道的算法类别、这些算法又各自有何神通,并轻轻点出:每个算法也有它的死穴。
第三章到第九章,作者深入详实地讲解了几种有代表性的机器学习算法:K-最近邻,朴素贝叶斯分类,决策树和随机森林,隐马尔可夫模型,支持向量机,神经网络,以及聚类。在这些章节中,不但讲解了算法核心部分的数学表达,也用机智、形象的语言描述了算法如何在实际生活中解决问题,并给出了关键的Python代码示例和算法训练、测试过程。
Matthew Kirk是一名软件咨询师、作者和国际演讲者,擅长机器学习和数据科学,使用Ruby和Python编程。现居于西雅图,他喜欢帮助软件工程师将数据科学融入到他们的技术栈中。
前言 1
第1章 5
可能近似正确的软件 5
正确地编写软件 6
编写正确的软件 10
本书计划 16
第2章 快速介绍机器学习 18
什么是机器学习 18
有监督学习 18
无监督学习 19
强化学习 20
机器学习能完成什么 20
本书中使用的数学符号 21
结论 22
第3章 K最近邻算法 23
如何确定是否想购买一栋房子 23
房子的价格究竟几何 24
愉悦回归 24
什么是邻域 25
K最近邻算法简介 26
K先生最近的邻居 26
距离 27
维度灾难 33
如何选择K 34
给西雅图的房子估价 37
结论 43
第4章 朴素贝叶斯分类 44
通过贝叶斯定理来发现欺诈订单 44
条件概率 45
概率符号 45
反向条件概率(又名贝叶斯定理) 47
朴素贝叶斯分类器 47
贝叶斯推理之朴素 48
伪计数 49
垃圾邮件过滤器 50
标记化和上下文 55
结论 67
第5章 决策树和随机森林 68
蘑菇的细微差别 69
使用民间定理实现蘑菇分类 70
找到最佳切换点 71
修剪树 74
结论 83
第6章 隐马尔可夫模型 84
使用状态机来跟踪用户行为 84
输出/观测隐含状态 86
使用马尔可夫假设化简 87
隐马尔可夫模型 88
评估: 前向-后向算法 89
通过维特比算法解码 93
学习问题 94
词性标注与布朗语库 94
结论 105
第7章 支持向量机 106
客户满意度作为语言的函数 107
SVM背后的理论 108
情绪分析器 113
聚合情绪 124
将情绪映射到底线 126
结论 127
第8章 神经网络 128
什么是神经网络 129
神经网络史 129
布尔逻辑 129
感知器 130
如何构建前馈神经网络 130
构建神经网络 144
使用神经网络来对语言分类 145
结论 154
第9章 聚类 155
无任何偏差的研究数据 155
用户群组 156
测试群集映射 157
K均值聚类 159
最大期望(EM)聚类 161
不可能性定理 163
案例:音乐归类 164
结论 174
第10章 模型改进与数据提取 175
辩论俱乐部 175
选择更好的数据 176
最小冗余最大相关性的特征选择 181
特征变换与矩阵分解 183
结论 189
第11章 将这些方法融合在一起:结论 191
机器学习算法回顾 191
如何使用这些信息来解决问题 193
下一步做什么 193
师父推荐的,感觉应该还可以吧~~~但愿都能看完
评分很好的一本书 十分喜欢 我自己对数据分析的兴趣越来越大 不知道以后会不会秃头 慌张
评分挺好的,希望以后能学得好一些
评分这书编排得比较细致,适合入门后的进阶学习,对数据统计分析有很大帮助。
评分超级品类日买的书,价钱还是很划算的,买了好多书,希望下次还有类似活动,继续囤书
评分入门书,零基础看了这本书也能用python的pandas和matplotlib进行一些简单的数据分析,数据分析不在乎用什么工具,而是有目的地去找一y些insight,下一步我需要达到的效果是:如果产生一个想法,能用工具快速验证(如数据预处理,绘出图标等)。
评分物流很快,书也不错,谢谢!
评分真的好用,速度快,下回还会继续购买
评分买书其实这种习惯不一定是一个坏习惯。长远来看,如果真正的有良好的读书习惯的话。那么这些东西无非就是一些存货而已,就像是家里边存粮一样简单。对于一些人而言,读书这件事情和吃饭睡觉一样是每天都必须有的。读书是一个行为,它和吃饭睡觉走路一样都是一个行为。没有必要贬低它也没有必要神话它,更没有必要被这种行为本身所引申出的买书行为所捆绑起来。对于一个真正喜好读书的人而言,不管你处于怎样的阶层上,以怎样的方式读书都是可以的
Python机器学习实践:测试驱动的开发方法 pdf epub mobi txt 电子书 下载