《python学习手册》 ISBN:9787111326533 定价:119.00
《python机器学习实践》 ISBN:978711158166 定价:59.00
《python机器学习实践:测试驱动的开发方法》本书一开始就立足于软件编写、算法测试的实践指导,为读者理解示例代码、动手编写自己的程序做必要的铺垫。
然后,作者才开始简明扼要地介绍机器学习算法的定义,以及读者必须知道的算法类别、这些算法又各自有何神通,并轻轻点出:每个算法也有它的死穴。
第三章到第九章,作者深入详实地讲解了几种有代表性的机器学习算法:K-最近邻,朴素贝叶斯分类,决策树和随机森林,隐马尔可夫模型,支持向量机,神经网络,以及聚类。在这些章节中,不但讲解了算法核心部分的数学表达,也用机智、形象的语言描述了算法如何在实际生活中解决问题,并给出了关键的Python代码示例和算法训练、测试过程。
内容简介Content Description 《Python学习手册(第4版)》学习Python的主要内建对象类型:数字、列表和字典。使用Python语句创建和处理对象,并且学习Python的通用语法模型。使用函数构造和重用代码,函数是Python的基本过程工具。学习Python模块:封装语句、函数以及其他工具,以便构建较大的组件。学习Python的面向对象编程工具,用于组织程序代码。学习异常处理模型,以及用于编写较大程序的开发工具。了解高级Python工具,如装饰器、描述器、元类和Unicode处理等。
《python机器学习实践:测试驱动的开发方法》本书一开始就立足于软件编写、算法测试的实践指导,为读者理解示例代码、动手编写自己的程序做必要的铺垫。
然后,作者才开始简明扼要地介绍机器学习算法的定义,以及读者必须知道的算法类别、这些算法又各自有何神通,并轻轻点出:每个算法也有它的死穴。
第三章到第九章,作者深入详实地讲解了几种有代表性的机器学习算法:K-最近邻,朴素贝叶斯分类,决策树和随机森林,隐马尔可夫模型,支持向量机,神经网络,以及聚类。在这些章节中,不但讲解了算法核心部分的数学表达,也用机智、形象的语言描述了算法如何在实际生活中解决问题,并给出了关键的Python代码示例和算法训练、测试过程。
python学习手册 python机器学习实践 测试驱动的开发方法 python基础入门 电子书 下载 mobi epub pdf txt