Wavelets in Engineering Applications 97870304

Wavelets in Engineering Applications 97870304 pdf epub mobi txt 电子书 下载 2025

罗高涌 著
图书标签:
  • 小波分析
  • 工程应用
  • 信号处理
  • 图像处理
  • 数值分析
  • 数学物理
  • 高等教育
  • 理工科
  • 科学计算
  • 数据分析
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 博学精华图书专营店
出版社: 科学出版社
ISBN:9787030410092
商品编码:29658020789
包装:平装
出版时间:2014-06-01

具体描述

基本信息

书名:Wavelets in Engineering Applications

:78.00元

售价:53.0元,便宜25.0元,折扣67

作者:罗高涌

出版社:科学出版社

出版日期:2014-06-01

ISBN:9787030410092

字数

页码:196

版次:1

装帧:平装

开本:16开

商品重量:0.4kg

编辑推荐


内容提要

《Wavelets iEngineering Applications》收集了作者所研究的小波理论在信息技术中的工程应用的十多篇论文的系统化合集。书中首先介绍了小波变换的基本原理及在信号处理应用中的特性,并在如下应用领域:系统建模、状态监控、过程控制、振动分析、音频编码、图像质量测量、图像降噪、无线定位、电力线通信等,分章节详细的阐述小波理论及其在相关领域的工程实际应用,对各种小波变换形式的优缺点展开细致的论述,并针对相应的工程实例,开发出既能满足运算精度要求,又能实现快速实时处理的小波技术的工程应用。因此,《Wavelets iEngineering Applications》既具有很强的理论参考价值,又具有非常实际的应用参考价值。

目录


作者介绍


文摘

ChApter 1
WAVELET TRANSFORMS IN SIGNAL PROCESSING
1.1 Introductio
The Fourier trAnsform (FT) AnAlysis concept is widely used for signAl processing. The FT of A functiox(t) is de.ned As

+∞
X.(ω)=x(t)e.iωtdt (1.1)
.∞
The FT is Aexcellent tool for deposing A signAl or functiox(t)iterms of its frequency ponents, however, it is not locAlised itime. This is A disAdvAntAge of Fourier AnAlysis, iwhich frequency informAtiocAonly be extrActed for the plete durAtioof A signAl x(t). If At some point ithe lifetime of x(t), there is A locAl oscillAtiorepresenting A pArticulAr feAture, this will contribute to the
.
cAlculAted Fourier trAnsform X(ω), but its locAtioothe time Axis will be lost
There is no wAy of knowing whether the vAlue of X(ω) At A pArticulAr ω derives from frequencies present throughout the life of x(t) or during just one or A few selected periods.
Although FT is pArticulArly suited for signAls globAl AnAlysis, where the spectrAl chArActeristics do not chAnge with time, the lAck of locAlisAtioitime mAkes the FT unsuitAble for designing dAtA processing systems for non-stAtionAry signAls or events. Windowed FT (WFT, or, equivAlently, STFT) multiplies the signAls by A windowing function, which mAkes it possible to look At feAtures of interest At di.erent times. MAthemAticAlly, the WFT cAbe expressed As A functioof the frequency ω And the positiob

1 +∞ X(ω, b)= x(t)w(t . b)e.iωtdt (1.2) 2π.∞ This is the FT of functiox(t) windowed by w(t) for All b. Hence one cAobtAiA time-frequency mAp of the entire signAl. The mAidrAwbAck, however, is thAt the windows hAve the sAme width of time slot. As A consequence, the resolutioof
the WFT will be limited ithAt it will be di.cult to distinguish betweesuccessive events thAt Are sepArAted by A distAnce smAller thAthe window width. It will Also be di.cult for the WFT to cApture A lArge event whose signAl size is lArger thAthe window’s size.
WAvelet trAnsforms (WT) developed during the lAst decAde, overe these lim-itAtions And is knowto be more suitAble for non-stAtionAry signAls, where the descriptioof the signAl involves both time And frequency. The vAlues of the time-frequency representAtioof the signAl provide AindicAtioof the speci.c times At which certAispectrAl ponents of the signAl cAbe observed. WT provides A mApping thAt hAs the Ability to trAde o. time resolutiofor frequency resolutioAnd vice versA. It is e.ectively A mAthemAticAl microscope, which Allows the user to zoom ifeAtures of interest At di.erent scAles And locAtions.
The WT is de.ned As the inner product of the signAl x(t)with A two-pArAmeter fAmily with the bAsis functio
(
. 1 +∞ t . b
2
WT(b, A)= |A|x(t)Ψˉdt = x, Ψb,A (1.3)
A
.∞
(
t . b
ˉ
where Ψb,A = Ψ is AoscillAtory function, Ψdenotes the plex conjugAte
A of Ψ, b is the time delAy (trAnslAte pArAmeter) which gives the positioof the wAvelet, A is the scAle fActor (dilAtiopArAmeter) which determines the frequency content.
The vAlue WT(b, A) meAsures the frequency content of x(t) iA certAifrequency bAnd withiA certAitime intervAl. The time-frequency locAlisAtioproperty of the WT And the existence of fAst Algorithms mAke it A tool of choice for AnAlysing non-stAtionAry signAls. WT hAve recently AttrActed much Attentioithe reseArch munity. And the technique of WT hAs beeApplied isuch diverse .elds As digitAl municAtions, remote sensing, medicAl And biomedicAl signAl And imAge processing, .ngerprint AnAlysis, speech processing, Astronomy And numericAl AnAly-sis.

1.2 The continuous wAvelet trAnsform
EquAtio(1.3) is the form of continuous wAvelet trAnsform (CWT). To AnAlyse Any .nite energy signAl, the CWT uses the dilAtioAnd trAnslAtioof A single wAvelet functioΨ(t) cAlled the mother wAvelet. Suppose thAt the wAvelet Ψ sAtis.es the Admissibility conditio
II
.2
II
+∞ I Ψ(ω)I CΨ =dω< ∞ (1.4)
ω
.∞
where Ψ.(ω) is the Fourier trAnsform of Ψ(t). Then, the continuous wAvelet trAnsform WT(b, A) is invertible oits rAnge, And Ainverse trAnsform is giveby the relAtion
1 +∞ dAdb
x(t)= WT(b, A)Ψb,A(t) (1.5)
A2
CΨ .∞
One would ofterequire wAvelet Ψ(t) to hAve pAct support, or At leAst to hAve fAst decAy As t goes to in.nity, And thAt Ψ.(ω) hAs su.cient decAy As ω goes to in.nity. From the Admissibility condition, it cAbe seethAt Ψ.(0) hAs to be 0, And, ipArticulAr, Ψ hAs to oscillAte. This hAs giveΨ the nAme wAvelet or “smAll wAve”. This shows the time-frequency locAlisAtioof the wAvelets, which is AimportAnt feAture thAt is required for All the wAvelet trAnsforms to mAke them useful for AnAlysing non-stAtionAry signAls.
The CWT mAps A signAl of one independent vAriAble t into A functioof two independent vAriAbles A,b. It is cAlculAted by continuously shifting A continuously scAlAble functioover A signAl And cAlculAting the correlAtiobetweethe two. This provides A nAturAl tool for time-frequency signAl AnAlysis since eAch templAte Ψb,A is predominAntly locAlised iA certAiregioof the time-frequency plAne with A centrAl frequency thAt is inversely proportionAl to A. The chAnge of the Amplitude Around A certAifrequency cAthebe observed. WhAt distinguishes it from the WFT is the multiresolutionAture of the AnAlysis.

1.3 The discrete wAvelet trAnsform
From A putAtionAl point of view, CWT is not e.cient. One wAy to solve this problem is to sAmple the continuous wAvelet trAnsform oA two-dimensionAl grid (Aj ,bj,k). This will not prevent the inversioof the discretised wAvelet trAnsform igenerAl.
IequAtio(1.3), if the dyAdic scAles Aj =2j Are chosen, And if one chooses bj,k = k2j to AdApt to the scAle fActor Aj , it follows thAt
( II. 1 ∞ t . k2j
2
dj,k =WT(k2j , 2j)= I2jI x(t)Ψˉdt = x(t), Ψj,k(t) (1.6) .∞ 2j
where Ψj,k(t)=2.j/2Ψ(2.j t . k).
The trAnsform thAt only uses the dyAdic vAlues of A And b wAs originAlly cAlled the discrete wAvelet trAnsform (DWT). The wAvelet coe.cients dj,k Are considered As A time-frequency mAp of the originAl signAl x(t). Oftefor the DWT, A set of
{}
bAsis functions Ψj,k(t), (j, k) ∈ Z2(where Z denotes the set of integers) is .rst chosen, And the goAl is theto .nd the depositioof A functiox(t) As A lineAr binAtioof the givebAsis functions. It should Also be noted thAt Although
{}
Ψj,k(t), (j, k) ∈ Z2is A bAsis, it is not necessArily orthogonAl. Non-orthogonAl bAses give greAter .exibility And more choice thAorthogonAl bAses. There is A clAss of DWT thAt cAbe implemented using e.cient Algorithms. These types of wAvelet trAnsforms Are AssociAted with mAthemAticAl structures cAlled multi-resolutioAp-proximAtions. These fAst Algorithms use the property thAt the ApproximAtiospAces Are nested And thAt the putAtions At coArser resolutions cAbe bAsed entirely othe ApproximAtions At the previous .nest level.
Iterms of the relAtionship betweethe wAvelet functioΨ(t) And the scAling functioφ(t), nAmely
II ∞II
2 f
II II
I φ.(ω)I = I Ψ.(2j ω)I (1.7)
j=.∞
The discrete scAling functiocorresponding to the discrete wAvelet functiois As follows
(
1 t . 2j k
φj,k(t)= √ φ (1.8)
2j 2j
It is used to discretise the signAl; the sAmpled vAlues Are de.ned As the scAling coe.cients cj,k

cj,k = x(t)φˉ j,k(t)dt (1.9)
.∞
Thus, the wAvelet depositioAlgorithm is obtAined
f
cj+1(k)= h(l)cj (2k . l)
l∈Z
f
dj+1(k)= g(l)cj (2k . l) (1.10)
l∈Z

Fig.1.1 Algorithm of fAst multi-resolutiowAvelet trAnsform
where the terms g And h Are high-pAss And low-pAss .lters derived from the wAvelet functionΨ(t) And the scAling functioφ(t), the coe.cients dj+1(k)And cj+1(k)rep-resent A depositioof the (j .1) th scAling coe.cient into high frequency (detAil informAtion) And low frequency (ApproximAtioinformAtion) terms. Thus, the Al-gorithm deposes the originAl signAl x(t) into di.erent frequency bAnds ithe time domAin. WheApplied recursively, the formulA (1.10) de.nes the fAst wAvelet trAnsform. Fig.1.1 shows the corresponding multi-resolutiofAst Algorithm, where 2 denotes down-sAmpling.

1.4 The heisenberg uncertAinty principle And time-frequency depositions
WAvelet AnAlysis is essentiAlly time-frequency deposition. The underlying prop-erty of wAvelets is thAt they Are well locAlised iboth time And frequency. This mAkes it possible to AnAlyse A signAl iboth time And frequency with unprecedented eAse And AccurAcy, zooming iovery brief intervAls of A signAl without losing too much informAtioAbout frequency. It is emphAsised thAt the wAvelets cAonly be well or optimAlly locAlised. This is becAuse the Heisenberg uncertAinty principle still holds, which cAbe expressed As the product of the two “uncertAinties”, or spreAds of possible vAlues Δt(time intervAl) And Δf(frequency intervAl)thAtis AlwAys AtleAst A certAiminimum number. The expressiois Also cAlled Heisenberg inequAlity.
WAvelets cAnnot overe this limitAtion, Although they AdApt AutomAticAlly to A signAl’s ponents, ithAt they bee wider to AnAlyse low frequencies And thinner to AnAlyse high frequencies.

1.5 Multi-resolutioAnAlysis
As discussed ithe previous section, multi-resolutioAnAlysis links wAvelets with the .lters used isignAl processing. Ithis ApproAch, the wAvelet is upstAged by A new function, the scAling function, which gives A series of pictures of the signAl, eAch At A resolutiodi.ering by A fActor of two from the previous resolution. Multi-resolutioAnAlysis is A powerful tool for studying signAls with feAtures At vArious scAles. IApplicAtions, the prActicAl implementAtioof this trAnsformAtiois performed by using A bAsic .lter bAnk, iwhich wAvelets Are incorporAted into A system thAt uses A cAscAde of .lters to depose A signAl. EAch resolutiohAs its owpAir of .lters: A low-pAss .lter AssociAted with the scAling function, giving AoverAll picture of the signAl, And A high-pAss .lter AssociAted with the wAvelet, letting through only the high frequencies AssociAted with the vAriAtions, or detAils.
By judiciously choosing the scAling function, which is Also referred to As the fAther wAvelet, one cAmAke customised wAvelets with the desired properties.
And the wAvelets generAted for multi-resolutioAnAlysis cAbe orthogonAl or non-orthogonAl. ImAny cAses no explicit expressiofor the scAling functiois AvAilAble. However, there Are fAst Algorithms thAt use the re.nement or dilAtioequAtioAs expressed iequAtio(1.10) to evAluAte the scAling functioAt dyAdic points.ImAny ApplicAtions, it mAy not be necessAry to construct the scAling functioitself, but to work directly with the AssociAted .lters.

1.6 Some importAnt properties of wAvelets
So fAr, there is no consensus As to how hArd one should work to choose the best wAvelet for A giveApplicAtion, And there Are no .rm guidelines ohow to mAke such A choice. IgenerAl, there Are two kinds of choices to mAke: the system of rep-resentAtio(continuous or discrete, orthogonAl or nonorthogonAl) And the properties of the wAvelets themselves.
1.6.1 CompAct support
If the scAling functioAnd wAvelet Are pActly supported, the .lters h And g Are .nite impulse response (FIR) .lters, so thAt the summAtions ithe fAst wAvelet trAnsform Are .nite. This obviously is of use iimplementAtion. If they Are not pActly supported, A fAst decAy is desirAble so thAt the .lters cAbe ApproximAted reAsonAbly by .nite impulse response .lters.

1.6.2 RAtionAl coe.cients
For puter implementAtions, it is of use if the coe.cients of the .lters h And g Are rAtionAls.

1.6.3 Symmetry
If the scAling functioAnd wAvelet Are symmetric, thethe .lters hAve generAlised lineAr phAse. The Absence of this property cAleAd to phAse distortion. This is importAnt isignAl processing ApplicAtions.

1.6.4 Smoothness
The smoothness of wAvelets is very importAnt iApplicAtions. A higher degree of smoothness corresponds to better frequency locAlisAtioof the .lters. Smooth bA-sis functions Are desired inumericAl AnAlysis ApplicAtions where derivAtives Are involved. The order of regulArity of A wAvelet is the number of its continuous derivA-tives.

序言



《工程应用中的小波理论与实践》 概述 《工程应用中的小波理论与实践》是一本深入探讨小波分析在现代工程领域中应用的权威著作。本书系统地阐述了小波理论的核心概念,并详细介绍了如何将其有效应用于解决各种复杂的工程问题。从基础理论的解析到实际案例的分析,本书旨在为工程师、研究人员和学生提供一个全面而实用的学习平台,帮助他们掌握小波技术,提升工程分析和设计的水平。 核心内容详述 第一部分:小波理论基础 本部分旨在为读者打下坚实的小波理论基础,即使是初学者也能逐步理解其精妙之处。 小波分析的起源与发展: 追溯小波分析的诞生背景,介绍其与傅里叶分析等传统信号处理方法的对比优势。重点阐述小波分析如何克服傅里叶分析在时频局部化方面的局限性,使其在处理非平稳信号方面表现卓越。 一维小波变换: 连续小波变换 (CWT): 详细介绍连续小波变换的数学定义,包括尺度函数(母小波)和位移、伸缩操作。通过图示和实例,直观地展示CWT如何分解信号,揭示信号在不同尺度(频率)和位置(时间)上的特征。讨论了不同类型的母小波(如Haar、Daubechies、Morlet等)的特性及其适用范围。 离散小波变换 (DWT): 重点介绍离散小波变换,包括其与Mallat算法的关系。深入讲解多分辨率分析(MRA)的概念,解释如何通过滤波器组(低通滤波器和高通滤波器)实现信号的分解与重构。详细推导离散小波变换的重构过程,确保读者理解信号如何从其近似分量和细节分量中恢复。 小波包变换 (WPT): 介绍小波包变换作为DWT的扩展,能够提供更精细的时频分解。阐述其构建树状结构,允许在细节分量上进行进一步分解,从而实现对信号更全面的分析。 二维及多维小波变换: 二维离散小波变换: 扩展一维理论至二维,讲解如何应用于图像等二维信号的处理。介绍二维滤波器组的设计,以及如何通过行/列分解或二维卷积实现二维信号的小波变换,产生近似分量、水平细节、垂直细节和对角细节分量。 多维小波变换: 简要介绍小波变换在更高维度信号(如视频、三维数据)中的应用,说明其处理和分析复杂多维数据的潜力。 小波的性质与选择: 母小波的选择准则: 讨论选择合适母小波的关键因素,包括紧支撑性、消失矩、对称性、正则性以及与待分析信号的匹配度。提供不同母小波在特定工程应用中的典型优劣分析。 正交小波与双正交小波: 区分正交小波和双正交小波的概念,解释它们在信号重构和计算复杂度上的差异,以及在不同应用场景下的偏好。 信号的重构与逆变换: 详细阐述如何通过逆离散小波变换(IDWT)将分解后的近似分量和细节分量组合起来,精确重构原始信号。强调小波变换的能量守恒特性。 第二部分:工程应用案例 本部分将理论付诸实践,展示小波分析在各个工程领域解决实际问题的能力。 信号去噪与滤波: 原理: 解释小波变换如何将信号与噪声分离。噪声通常在所有尺度上都表现为高频细节,而有用信号则可能在特定尺度上具有更显著的特征。通过在小波域对系数进行阈值处理,可以有效去除噪声,保留信号的有用信息。 阈值选择方法: 详细介绍各种阈值选择策略,如硬阈值、软阈值,以及基于统计的方法(如VisuShrink、SUREshrink)。 案例: 医学信号去噪: 如心电图(ECG)、脑电图(EEG)信号中的噪声去除,提高诊断的准确性。 通信信号去噪: 改善信噪比,确保信息传输的可靠性。 机械振动信号去噪: 消除测量中的干扰,为故障诊断提供清晰的原始数据。 特征提取与模式识别: 原理: 小波变换能够捕捉信号在不同尺度和时间/空间上的局部特征。这些特征可以作为模式识别的依据。 案例: 图像分析与识别: 边缘检测: 小波变换对图像中的不连续点(如边缘)非常敏感,可以有效地检测出图像的边缘信息。 纹理分析: 通过分析不同尺度下的小波系数,可以提取图像的纹理特征,用于图像分类和检索。 目标识别: 将小波特征用于人脸识别、物体检测等任务。 语音信号分析: 提取语音信号的基频、共振峰等特征,用于语音识别和说话人身份识别。 机械故障诊断: 通过分析设备运行过程中产生的振动、声音等信号的小波特征,识别潜在的故障模式,预测设备寿命。 信号压缩: 原理: 小波变换能够将大部分信号能量集中在少数几个大的小波系数上,而许多小系数可以被忽略而不显著影响信号的视觉或听觉质量。 算法: 介绍基于小波变换的有损和无损压缩算法,如JPEG2000图像压缩标准就是基于小波变换。 案例: 图像压缩: 实现高压缩比的同时保持良好的图像质量,适用于图像存储和传输。 音频压缩: 减少音频文件大小,提高存储效率。 图像融合: 原理: 将来自不同传感器或不同模态的图像(如可见光图像与红外图像)的小波系数进行融合,生成包含两幅图像互补信息的融合图像。 案例: 多光谱/全色图像融合: 提高遥感图像的空间分辨率。 医学图像融合: 整合不同成像方式(如CT、MRI)的图像信息,提供更全面的诊断依据。 时频分析与瞬态信号检测: 原理: 小波变换的时频分析能力使其非常适合研究瞬态信号,即在短暂时间内出现的信号事件。 案例: 地震信号分析: 检测和分析地震波中的瞬态事件。 电力系统故障瞬态分析: 识别电力系统中的暂态故障信号。 生物医学瞬态信号分析: 研究神经脉冲、心脏搏动等瞬态生理信号。 其他工程应用: 结构健康监测: 利用小波分析处理传感器数据,检测结构的损伤和异常。 流体力学: 分析湍流的复杂结构。 材料科学: 研究材料的微观结构和性质。 金融工程: 分析金融时间序列数据的波动性和趋势。 第三部分:实践指南与未来展望 本部分提供实际操作建议,并展望小波技术的发展方向。 实现工具与软件: 介绍常用的支持小波分析的软件库和工具箱,如MATLAB的小波工具箱、Python的PyWavelets库等。提供具体的编程示例,指导读者如何使用这些工具进行数据处理和分析。 算法实现要点: 总结在工程实践中实现小波算法时需要注意的关键技术点,包括数据预处理、参数选择、计算效率优化等。 挑战与限制: 坦诚地讨论小波分析在实际应用中可能遇到的挑战,如计算复杂度、小波选择的敏感性、对噪声模型的依赖等。 未来发展趋势: 探讨小波分析在人工智能、深度学习等新兴技术领域的融合应用,以及其在更复杂、更高维度问题中的潜在发展。 总结 《工程应用中的小波理论与实践》不仅是一本理论书籍,更是一本实用指南。通过系统地介绍小波分析的理论基础,并辅以大量详实的工程应用案例,本书能够帮助读者深刻理解小波变换的强大威力,并掌握将其应用于实际工程问题的解决技巧。无论您是想深入研究小波理论,还是希望将其作为解决工程难题的有力工具,本书都将是您不可或缺的参考。本书强调理论与实践的结合,旨在培养具备创新思维和解决复杂工程问题能力的工程师。

用户评价

评分

这本厚重的著作,书名本身就带着一种理工科特有的严谨和对前沿技术的聚焦,初拿到手时,就被其封面的设计和书籍的装帧所吸引。我原本是带着对信号处理领域一些基础概念的理解来翻阅的,希望能找到一些将理论应用于实际工程问题的桥梁。然而,在深入阅读后我发现,本书的侧重点似乎更偏向于数学原理的推导和纯理论的构建,对于我这个期望能快速上手解决实际工程挑战的工程师来说,入口的门槛显得有些高。书中对各种小波基函数族(如Haar、Daubechies等)的构建过程和数学性质的探讨占据了相当大的篇幅,这些内容虽然是理解小波变换核心的基石,但对于非数学专业的读者来说,连续的积分符号和复杂的希尔伯特空间描述,着实让人在早期阅读中感到吃力。我期待更多关于如何选择合适的分解尺度、如何设计最优的阈值处理方案,以及在具体应用场景下(比如传感器数据去噪、图像压缩等)的工程实践案例和代码示例,但这些内容在初期的章节中相对稀疏,更多的是在为后续的理论发展铺路。因此,对于那些希望快速将小波技术应用于项目、寻求“开箱即用”解决方案的读者,可能需要有足够的耐心去啃下那些坚实的理论“硬骨头”才能触及到实际应用的皮毛。整体来说,这本书更像是一部面向研究人员或高阶学生的理论参考手册,而非一本工程实践指南。

评分

说实话,我购买这本书的初衷是想找一本能够系统梳理小波在现代工业控制和故障诊断中应用的权威参考。我深知小波变换在捕捉瞬态信号和非平稳数据方面的优势,特别是在机械振动分析领域,它被誉为处理此类问题的利器。然而,阅读这本书的过程中,我感到作者的叙述逻辑似乎更侧重于信号分析方法论的完整性,而非特定工程领域的深度剖析。例如,书中对小波包分解(Wavelet Packet Decomposition)的介绍非常详尽,从理论上阐述了其多分辨率分析的优越性,这无疑是严谨的。但当我试图寻找书中关于如何根据特定设备的固有频率和故障特征谱来确定最优的小波基和分解层数的具体方法论时,却发现相关论述比较抽象,缺乏具体的流程图指导或行业规范的引用。对于一个需要向管理层汇报技术选型、并对最终诊断的可靠性负责的工程师而言,我更需要的是一套经过验证的、可量化的决策框架,而不是纯粹的数学最优性证明。这本书提供的知识框架是宏大而基础的,但似乎略微脱离了当代工程现场对于快速迭代和高鲁棒性要求的迫切需求。

评分

这本书的篇幅非常可观,显然汇集了作者多年来的学术沉淀。对于希望深入研究小波在金融时间序列分析中的应用的读者来说,我必须指出,书中对这一特定领域的着墨相对不足。虽然小波的多尺度特性理论上非常适合捕捉股票价格、汇率等信号中存在的不同时间尺度的波动特征(例如,日内波动、周度趋势、季节性效应),但书中似乎更青睐于其在物理信号处理中的传统优势。在专门讨论应用的部分,我发现更多的是关于传感器信号的去噪和压缩,而非对金融市场的非线性动态建模的深入探讨。更具体地说,我期望看到如何利用小波对金融数据进行多尺度熵分析,或者如何将其作为一种有效的特征提取手段嵌入到机器学习预测模型中。书中对这些前沿跨学科应用的方向性指导非常少,更多的是停留在基础理论的展示。因此,对于金融工程方向的研究生或专业人士而言,可能需要将本书作为理论基础的补充,而必须额外搜寻大量专门针对经济学时间序列特性的小波应用文献,才能真正满足其研究需求。

评分

这本书的排版和印刷质量倒是无可挑剔,纸张的质感很好,让人在长时间阅读时眼睛也不会感到过于疲劳,这是值得肯定的。但内容上的组织结构,却让我有些摸不着头脑,尤其是在章节之间的过渡上。它似乎将不同领域的小波应用案例分散地嵌入到不同的数学章节之后,导致读者在学习过程中缺乏一条清晰的主线索来串联起整个知识体系。比如,关于小波在图像处理中的应用,我在第三章的尾声看到了零星的讨论,而关于其在时间序列预测方面的能力,却要等到第八章的收尾部分才能瞥见一些讨论的影子。这种“散点式”的介绍方式,使得我很难建立起一个关于“小波能力全景图”的认知模型。如果能有一个核心的工程应用案例,贯穿全书,并在后续章节中不断深化、引入更复杂的小波理论来解决该案例中遇到的新问题,想必学习体验会大大提升。我需要的是一个“案例驱动”的学习路径,而不是被动地接收一系列孤立的数学事实和理论分支。目前的状态更像是站在一个巨大的知识库前,虽然内容详实,但缺乏一个清晰的索引和推荐路径。

评分

我花了一些时间研究书中关于小波逆变换的重构算法的章节。理论上讲,小波逆变换是信号恢复的关键步骤,它决定了我们从分解系数中恢复原始信号的保真度。书中详细阐述了正交小波和框架理论下的重构公式,推导过程严谨无懈可击。但令人遗憾的是,对于实际工程中最常遇到的非完美条件,比如数据丢失、测量噪声的非高斯特性、以及不同分解层级系数的非线性组合处理,书中的讨论显得过于理想化。在实际的嵌入式系统中部署信号处理算法时,我们常常需要在计算精度和运算速度之间做出权衡,这意味着我们可能无法使用书中描述的那些计算复杂度较高的精确重构方法。我期待看到作者能更深入地探讨近似重构技术、对系数进行稀疏化处理后的鲁棒性分析,或者是一些针对特定硬件限制的优化策略。这本书更像是在一个理论的“真空环境”中进行教学,对于真实世界中充斥着各种不确定性和资源约束的工程师来说,这些“软性”的工程考量似乎被有意或无意地忽略了。

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.coffeedeals.club All Rights Reserved. 静流书站 版权所有