暢銷書《Python神經網絡編程》作者最新力作;
全彩印刷,配套示例代碼,圖文並茂,易懂實用;
從零開始,用PyTorch構建自己的生成對抗網絡。
生成對抗網絡(Generative Adversarial Network,GAN)是神經網絡領域的一顆新星,被譽為“機器 學習領域近 20 年來最酷的想法”。
本書以直白、簡短的方式嚮讀者介紹瞭生成對抗網絡,指導讀者如何使用PyTorch 按部就班地編寫生成對抗網絡。
全書共3章和5個附錄,分彆介紹瞭PyTorch基礎知識,用PyTorch開發神經網絡,改良神經網絡以提升效果,引入CUDA和GPU以加速GAN訓練,以及生成高質量圖像的捲積GAN、條件式GAN等話題。附錄部分介紹瞭在很多機器學習相關教程中被忽略的主題,包括計算平衡GAN的理想損失值、概率分布和采樣,以及捲積如何工作,還簡單解釋瞭為什麼梯度下降不適用於對抗式機器學習。
本書適閤想初步瞭解GAN以及其工作原理的讀者,也適閤想要學習如何構建GAN的機器學習從業人員。對於正在學習機器學習相關課程的學生,本書可以幫助讀者快速入門,為後續的學習打好基礎。
##模式崩潰 代碼更新 colab 自動計算梯度很爽,DG 1.0 0.0 1.0
評分##nb!
評分##非常適閤入門,簡潔易懂
評分##由淺入深逐步引導,非常適閤入門
評分##小錯誤不少
評分##內容非常不錯,很詳細的解釋瞭原理,並且很通俗易懂,但是代碼有一些問題,需要更新一下
評分##內容非常不錯,很詳細的解釋瞭原理,並且很通俗易懂,但是代碼有一些問題,需要更新一下
評分##寫得真好 讀的輕輕鬆鬆 colab真香 書裏麵代碼有一處小錯誤 但無傷大雅
評分##內容非常不錯,很詳細的解釋瞭原理,並且很通俗易懂,但是代碼有一些問題,需要更新一下
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.coffeedeals.club All Rights Reserved. 靜流書站 版權所有