编辑推荐
《国外电子与通信教材系列:光电子学与光子学·原理与实践(第2版)(英文版)》是在光电子和光子器件领域的一个最新的适合本科阶段的入门教科书,《国外电子与通信教材系列:光电子学与光子学·原理与实践(第2版)(英文版)》力求采用尽可能少的数学推导而强调通过物理概念来说明原理,提供了许多例题,使得课本概念与实际器件相联系,也提供了大量的练习题。
《国外电子与通信教材系列:光电子学与光子学·原理与实践(第2版)(英文版)》有非常清楚的文字和图,明确的解释使得问题很容易理解。与众不同的另一点是它既覆盖了光子学基本面,又具有较深的深度,包含了具体的器件设计和工程应用知识,将光子学和光电子基本理论与各种光子学应用相结合。所以这是一本对本科生、研究生以及光电工程师都非常有用的教科书。
内容简介
《国外电子与通信教材系列:光电子学与光子学·原理与实践(第2版)(英文版)》的主要内容包括光的波动特性,介质波导和光纤,半导体科学基础和LED,光放大器和激光器,光探测器和图像传感器,光的偏振和调制等。每个章节除了基本的题材,还给出一些附加主题适当介绍先进技术和产品化光电子器件实例,扩大和深化读者对基本内容的理解。
《国外电子与通信教材系列:光电子学与光子学·原理与实践(第2版)(英文版)》力求采用尽可能少的数学推导而强调通过物理概念来说明原理,提供了许多例题,使得课本概念与实际器件相联系,也提供了大量的练习题。
作者简介
S.O.Kasap,是加拿大萨斯喀彻温大学(University of Saskatchewan)电气工程系教授以及加拿大电子材料与器件首席科学家(Canada Research Chair)。他于1976年、1978年和1983年在伦敦大学帝国理工学院(Imperial College of Science。Technology and Medicine,University of London)分别获得学士、硕士和博士学位。他的研究兴趣涵盖了光电子材料与器件的许多方面,如光子晶体光纤布拉格光栅、光通信、医疗成像、半导体器件的电气噪声特性等。S.O.Kasap已在权威国际期刊发表多篇论文。他还是英国电气工程师学会(IEE)、英国物理学会和英国材料学会的会士。目前,他是Journal of Materials Science的副主编。
目录
Chapter 1 Wave Nature of Light
1.1 Light Waves in a Homogeneous Medium
1.2 Refractive Index and Dispersion
1.3 Group Velocity and Group Index
1.4 Magnetic Field, Irradiance, and Poynting Vector
1.5 Snell's Law and Total Internal Reflection (TIR)
1.6 Fresnel's Equations
1.7 Antireflection Coatings and Dielectric Mirrors
1.8 Absorption of Light and Complex Refractive Index
1.9 Temporal and Spatial Coherence
1.10 Superposition and Interference of Waves
1.11 Multiple Interference and Optical Resonators
1.12 Diffraction Principles
1.13 Interferometers
1.14 Thin Film Optics: Multiple Reflections in Thin Films
1.15 Multiple Reflections in Plates and Incoherent Waves
1.16 Scattering of Light
1.17 Photonic Crystals
Chapter 2 Dielectric Waveguides and Optical Fibers
2.1 Symmetric Planar Dielectric Slab Waveguide
2.2 Modal and Waveguide Dispersion in Planar
2.3 Step-Index Optical Fiber
2.4 Numerical Aperture
2.5 Dispersion In Single-Mode Fibers
2.6 Dispersion Modified Fibers and Compensation
2.7 Bit Rate, Dispersion, and Electrical and Optical Bandwidth
2.8 The Graded Index (GRIN) Optical Fiber
2.9 Attenuation in Optical Fibers
2.10 Fiber Manufacture
2.11 Wavelength Division Multiplexing: WDM
2.12 Nonlinear Effects in Optical Fibers and DWDM
2.13 Bragg Fibers
2.14 Photonic Crystal Fibers-Holey Fibers
2.15 Fiber Bragg Gratings and Sensors
Chapter 3 Semiconductor Science and Light-Emitting Diodes
3.1 Review of Semiconductor Concepts and Energy Bands
3.2 Semiconductor Statistics
3.3 Extrinsic Semiconductors
3.4 Direct and Indirect Bandgap Semiconductors:
3.5 pn Junction Principles
3.6 pn Junction Reverse Current
3.7 pn Junction Dynamic Resistance and Capacitances
3.8 Recombination Lifetime
3.9 pn Junction Band Diagram
3.10 Heterojunctions
3.11 Light-Emitting Diodes: Principles
3.12 Quantum Well High Intensity LEDs
3.13 LED Materials and Structures
3.14 LED Efficiencies and Luminous Flux
3.15 Basic LED Characteristics
3.16 LEDs for Optical Fiber Communications
3.17 Phosphors and White LEDs
3.18 LED Electronics
Chapter 4 Stimulated Emission Devices: Optical Amplifiers and Lasers
4.1 Stimulated Emission, Photon Amplification, and Lasers
4.2 Stimulated Emission Rate and Emission Cross-Section
4.3 Erbium-Doped Fiber Amplifiers
4.4 Gas Lasers: The He-Ne Laser
4.5 The Output Spectrum of a Gas Laser
4.6 Laser Oscillations: Threshold Gain Coefficient
4.7 Broadening of the Optical Gain Curve and Linewidth
4.8 Pulsed Lasers: Q-Switching and Mode Locking
4.9 Principle of the Laser Diode
4.10 Heterostructure Laser Diodes
4.11 Quantum Well Devices
4.12 Elementary Laser Diode Characteristics
4.13 Steady State Semiconductor Rate Equations:
4.14 Single Frequency Semiconductor Lasers
4.15 Vertical Cavity Surface Emitting Lasers
4.16 Semiconductor Optical Amplifiers
4.17 Superluminescent and Resonant Cavity Leds:
4.18 Direct Modulation of Laser Diodes
4.19 Holography
Chapter 5 Photodetectors and Image Sensors
5.1 Principle of the pn Junction Photodiode
5.2 Shockley-Ramo Theorem and External Photocurrent
5.3 Absorption Coefficient and Photodetector Materials
5.4 Quantum Efficiency and Responsivity
5.5 The pin Photodiode
5.6 Avalanche Photodiode
5.7 Heterojunction Photodiodes
5.8 Schottky Junction Photodetector
5.9 Phototransistors
5.10 Photoconductive Detectors and Photoconductive
5.11 Basic Photodiode Circuits
5.12 Noise in Photodetectors
5.13 Image Sensors
5.14 Photovoltaic Devices: Solar Cells
Chapter 6 Polarization and Modulation of Light
6.1 Polarization
6.2 Light Propagation in an Anisotropic Medium:
6.3 Birefringent Optical Devices
6.4 Optical Activity and Circular Birefringence
6.5 Liquid Crystal Displays
6.6 Electro-Optic Effects
6.7 Integrated Optical Modulators
6.8 Acousto-Optic Modulator
6.9 Faraday Rotation and Optical Isolators
6.10 Nonlinear Optics and Second Harmonic Generation
6.11 Jones Vectors
……
前言/序言
Preface
The first edition of this book was written more than 12 years ago. At the time it was meant as an easy-to-read book for third-year engineering or applied physics undergraduate students;it emphasized qualitative explanations and relied heavily on intuitive derivations. As things turned out, the first edition ended up being used in fourth-year elective classes, and even in graduate courses on optoelectronics. Many of the instructors teaching at that level rightly needed better derivations, more rigor, better explanations, and, of course, many more topics and problems. We have all at one time or another suffered from how wrong some intuitive short-cut derivations can be. The second edition was therefore prepared by essentially rewriting the text almost from scratch with much better rigor and explanations, but without necessarily dwelling on mathematical details. Many new exciting practical examples have been introduced, and numerous new problems have been added. The book also had to be totally modernized given that much had happened in the intervening 12 years that deserved being covered in an undergraduate course.
Features, Changes, and Revisions in the Second Edition
The second edition represents a total revision of the first edition, with numerous additional features and enhancements.
All chapters have been totally revised and extended.
Numerous modern topics in photonics have been added to all the chapters.
There are Additional Topics that can be covered in more advanced courses, or in courses that run over two semesters.
There are many more new examples and solved prblems within chapters, and many more practical end-of-chapter problems that start from basic concepts and build up onto advanced applications.
Nearly all the illustrations and artwork in the first edition have been revised and redrawn to better reflect the concepts.
Numerous new illustrations have been added to convey the concepts as clearly as possible.
Photographs have been added, where appropriate, to enhance the readability of the book and to illustrate typical modern photonic/optoelectronic devices.
The previous edition’s Chapter 7 on photovoltaics has been incorporated into this edition’s Chapter 5 as an Additional Topic, thus allowing more photonics-related topics to be covered.
Advanced or complicated mathematical derivations are avoided and, instead, the emphasis is placed on concepts and engineering applications.
Useful and essential equations in photonics are given with explanations and are used in examples and problems to give the student a sense of what typical values are.
Cross referencing in the second edition has been avoided as much as possible, without too much repetition, to allow various sections and chapters to be skipped as desired by the reader.
There is greater emphasis on practical or engineering examples; care has been taken to consider various photonics/optoelectronics courses at the undergraduate level across major universities.
The second edition is supported by an extensive PowerPoint presentation for instructors who have adopted the book for their course. The PowerPoint slides have all the illustrations in color, and include additional color photos. The basic concepts and equations are also highlighted in additional slides. There are also numerous slides with examples and solved problems. Instructors should visit www.pearsoninternationaleditions.com/kasap to access the PowerPoints.
The second edition is also supported by a
国外电子与通信教材系列:光电子学与光子学·原理与实践(第2版)(英文版) 电子书 下载 mobi epub pdf txt