深度学习 人工智能算法,机器学习奠基之作,AI圣经

深度学习 人工智能算法,机器学习奠基之作,AI圣经 pdf epub mobi txt 电子书 下载 2025

[美] Ian Goodfellow(伊恩·古德费洛 著
图书标签:
  • 深度学习
  • 人工智能
  • 机器学习
  • 算法
  • AI
  • 神经网络
  • 模式识别
  • Python
  • TensorFlow
  • PyTorch
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 英典图书专营店
出版社: 人民邮电出版社
ISBN:9787115461476
商品编码:16427298146
包装:平装-胶订
出版时间:2017-07-01

具体描述

基本信息

书名:深度学习 人工智能算法,机器学习奠基之作,AI圣经

:168.00元

作者:Ian Goodfellow(伊恩·古德费洛)、

出版社:人民邮电出版社

出版日期:2017-07-01

ISBN:9787115461476

字数:

页码:

版次:1

装帧:平装-胶订

开本:16开

商品重量:0.4kg

编辑推荐


内容提要


《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。

目录



第 1 章 引言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 本书面向的读者 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.2 深度学习的历史趋势 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 神经网络的众多名称和命运变迁 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 与日俱增的数据量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 与日俱增的模型规模 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
1.2.4 与日俱增的精度、复杂度和对现实世界的冲击 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

第 1 部分 应用数学与机器学习基础
第 2 章 线性代数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 标量、向量、矩阵和张量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 矩阵和向量相乘. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
2.3 单位矩阵和逆矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 线性相关和生成子空间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 范数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
2.6 特殊类型的矩阵和向量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 特征分解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 奇异值分解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 Moore-Penrose 伪逆 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.10 迹运算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.11 行列式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.12 实例:主成分分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
第 3 章 概率与信息论. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
3.1 为什么要使用概率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 随机变量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 概率分布 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 离散型变量和概率质量函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 连续型变量和概率密度函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 边缘概率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 条件概率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 条件概率的链式法则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 独立性和条件独立性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 期望、方差和协方差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.9 常用概率分布 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9.1 Bernoulli 分布 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9.2 Multinoulli 分布 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9.3 高斯分布 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9.4 指数分布和 Laplace 分布 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.9.5 Dirac 分布和经验分布 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.9.6 分布的混合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.10 常用函数的有用性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
3.11 贝叶斯规则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.12 连续型变量的技术细节 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.13 信息论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.14 结构化概率模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
第 4 章 数值计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1 上溢和下溢 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 病态条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 基于梯度的优化方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 梯度之上:Jacobian 和 Hessian 矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 约束优化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 实例:线性小二乘 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
第 5 章 机器学习基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
5.1 学习算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.1 任务 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.2 性能度量 P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.3 经验 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.4 示例:线性回归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 容量、过拟合和拟合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.1 没有免费午餐定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 正则化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 超参数和验证集. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
5.3.1 交叉验证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4 估计、偏差和方差. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
5.4.1 点估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.2 偏差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.3 方差和标准差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.4 权衡偏差和方差以小化均方误差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.5 一致性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5 大似然估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.1 条件对数似然和均方误差. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
5.5.2 大似然的性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 贝叶斯统计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6.1 大后验 (MAP) 估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.7 监督学习算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.7.1 概率监督学习 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.7.2 支持向量机 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.7.3 其他简单的监督学习算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
5.8 无监督学习算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
5.8.1 主成分分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.8.2 k-均值聚类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
5.9 随机梯度下降 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.10 构建机器学习算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.11 促使深度学习发展的挑战 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.11.1 维数灾难 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.11.2 局部不变性和平滑正则化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.11.3 流形学习 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

第 2 部分 深度网络:现代实践
第 6 章 深度前馈网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.1 实例:学习 XOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 基于梯度的学习 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2.1 代价函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.2 输出单元 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 隐藏单元. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
6.3.1 整流线性单元及其扩展 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.2 logistic sigmoid 与双曲正切函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.3 其他隐藏单元 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.4 架构设计. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
6.4.1 近似性质和深度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
6.4.2 其他架构上的考虑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
6.5 反向传播和其他的微分算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
6.5.1 计算图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.5.2 微积分中的链式法则. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
6.5.3 递归地使用链式法则来实现反向传播 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5.4 全连接 MLP 中的反向传播计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.5.5 符号到符号的导数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
6.5.6 一般化的反向传播 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
6.5.7 实例:用于 MLP 训练的反向传播 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
6.5.8 复杂化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.5.9 深度学习界以外的微分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.5.10 高阶微分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.6 历史小记. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
第 7 章 深度学习中的正则化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.1 参数范数惩罚 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.1.1 L2 参数正则化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.1.2 L1 正则化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2 作为约束的范数惩罚. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
7.3 正则化和约束问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
7.4 数据集增强 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.5 噪声鲁棒性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.5.1 向输出目标注入噪声. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
7.6 半监督学习 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.7 多任务学习 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.8 提前终止. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
7.9 参数绑定和参数共享. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
7.9.1 卷积神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.10 稀疏表示. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
7.11 Bagging 和其他集成方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
7.12 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159
7.13 对抗训练. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
7.14 切面距离、正切传播和流形正切分类器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
第 8 章 深度模型中的优化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
8.1 学习和纯优化有什么不同 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.1.1 经验风险小化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.1.2 代理损失函数和提前终止 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.1.3 批量算法和小批量算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.2 神经网络优化中的挑战 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.2.1 病态 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.2.2 局部极小值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.2.3 高原、鞍点和其他平坦区域 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
8.2.4 悬崖和梯度爆炸 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.2.5 长期依赖 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.2.6 非梯度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.2.7 局部和全局结构间的弱对应 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.2.8 优化的理论限制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
8.3 基本算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180
8.3.1 随机梯度下降 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.3.2 动量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.3.3 Nesterov 动量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
8.4 参数初始化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.5 自适应学习率算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.5.1 AdaGrad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.5.2 RMSProp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.5.3 Adam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.5.4 选择正确的优化算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
8.6 二阶近似方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
8.6.1 牛顿法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
8.6.2 共轭梯度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.6.3 BFGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.7 优化策略和元算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.7.1 批标准化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.7.2 坐标下降 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.7.3 Polyak 平均 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.7.4 监督预训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.7.5 设计有助于优化的模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.7.6 延拓法和课程学习 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199
第 9 章 卷积网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
9.1 卷积运算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
9.2 动机 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9.3 池化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
9.4 卷积与池化作为一种无限强的先验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.5 基本卷积函数的变体. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211
9.6 结构化输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.7 数据类型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219
9.8 高效的卷积算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.9 随机或无监督的特征. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220
9.10 卷积网络的神经科学基础 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
9.11 卷积网络与深度学习的历史 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
第 10 章 序列建模:循环和递归网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
10.1 展开计算图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
10.2 循环神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
10.2.1 导师驱动过程和输出循环网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
10.2.2 计算循环神经网络的梯度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
10.2.3 作为有向图模型的循环网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
10.2.4 基于上下文的 RNN 序列建模 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
10.3 双向 RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
10.4 基于编码 - 解码的序列到序列架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
10.5 深度循环网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242
10.6 递归神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243
10.7

《深度学习:人工智能算法,机器学习奠基之作,AI圣经》 引言:开启智能时代的新篇章 在科技飞速发展的今天,人工智能(AI)已不再是遥不可及的科幻概念,而是深刻影响我们生活方方面面的现实力量。从智能手机中的语音助手,到自动驾驶汽车的导航系统,再到精准医疗的诊断工具,AI正以前所未有的速度渗透并重塑着我们的世界。而在这场席卷全球的智能革命背后,一个核心技术驱动着这一切的飞跃,它就是深度学习。 《深度学习:人工智能算法,机器学习奠基之作,AI圣经》 是一部划时代的著作,它不仅为我们揭示了深度学习的奥秘,更将这一前沿技术置于更广阔的人工智能与机器学习的宏伟图景中,为读者提供了一个系统、深入且富有洞察力的学习路径。本书被誉为“AI圣经”,足见其在学界和业界的重要地位,它不仅仅是一本技术手册,更是一份引领未来智能发展的思想宝典。 第一部分:机器学习的基石——理解智能的本质 在深入探讨深度学习之前,本书首先为我们奠定了坚实的机器学习理论基础。它将带领读者从最基础的概念出发,逐步理解机器学习的核心思想:如何让机器从数据中学习,并根据学习到的模式做出预测或决策,而无需进行明确的编程。 从统计学到学习算法: 本书会详细阐述机器学习与统计学的紧密联系,介绍诸如概率论、统计推断、信息论等关键数学工具,这些工具是理解和构建机器学习模型的基石。读者将学习到如何用数学语言来描述数据,以及如何量化模型的不确定性。 监督学习、无监督学习与强化学习: 这三大类机器学习范式将得到细致的讲解。 监督学习: 重点在于如何从带有标签的数据中学习映射关系,例如分类(识别图像中的猫或狗)、回归(预测房价)。本书会深入探讨线性回归、逻辑回归、支持向量机(SVM)、决策树等经典监督学习算法,并分析它们的优缺点及适用场景。 无监督学习: 关注于从未标记的数据中发现隐藏的模式和结构,例如聚类(将相似的客户分组)、降维(简化高维数据)。读者将学习到 K-Means、主成分分析(PCA)、自编码器等重要的无监督学习技术。 强化学习: 探讨智能体如何在环境中通过试错来学习最优策略,以最大化累积奖励。这将涉及到马尔可夫决策过程(MDP)、Q-learning、深度Q网络(DQN)等核心概念,为理解更复杂的智能体行为奠定基础。 模型评估与选择: 任何机器学习项目都离不开对模型性能的评估和选择。本书将详细介绍各种评估指标(准确率、精确率、召回率、F1分数、AUC等),以及交叉验证、模型正则化等防止过拟合、提高模型泛化能力的重要技术。 第二部分:深度学习的崛起——神经网络的革命 在构建了扎实的机器学习基础后,本书将笔锋一转,聚焦于深度学习这一颠覆性的技术。深度学习之所以被称为“深度”,在于其利用多层(深层)神经网络来模拟人脑的学习过程,能够自动从原始数据中提取复杂的、层次化的特征。 神经网络的基本单元:感知机与激活函数: 本书将从最简单的神经网络单元——感知机开始,讲解其工作原理。随后,将深入介绍各种激活函数(Sigmoid, ReLU, Tanh等),它们在引入非线性、使得网络能够学习复杂模式方面起着至关重要的作用。 多层感知机(MLP): 读者将学习到如何将多个感知机连接起来,构建出具有隐藏层的多层感知机,并理解其在前馈过程中的信息流动。 反向传播算法: 这是深度学习训练的核心机制。本书将详尽地解释反向传播算法的数学原理,包括梯度下降的更新过程,以及如何通过反向传播来有效地调整网络权重,从而最小化损失函数。 卷积神经网络(CNNs): 专为处理图像等网格状数据而设计的CNNs是深度学习在计算机视觉领域取得突破性进展的关键。本书将详细讲解卷积层、池化层、全连接层等CNNs的核心组件,并阐述其在图像识别、物体检测等任务中的强大能力。读者将理解卷积操作如何提取局部特征,池化操作如何实现降维和特征不变性。 循环神经网络(RNNs)及其变体(LSTMs, GRUs): 针对序列数据(如文本、时间序列)的特点,RNNs被设计出来。本书将介绍RNNs如何通过循环连接来捕捉序列中的时间依赖性。同时,也将深入分析传统RNNs在处理长序列时面临的梯度消失/爆炸问题,并重点讲解长短期记忆网络(LSTMs)和门控循环单元(GRUs)是如何通过精心设计的“门”机制来有效解决这些问题的,从而在自然语言处理、语音识别等领域取得巨大成功。 生成对抗网络(GANs): GANs是近年来深度学习领域最引人注目的发展之一。本书将揭示GANs如何通过“生成器”和“判别器”之间的对抗性训练,生成逼真的人造数据,例如图像、音乐等。读者将理解其在图像生成、风格迁移、数据增强等方面的巨大潜力。 Transformer模型与注意力机制: Transformer模型凭借其强大的并行处理能力和出色的长距离依赖捕捉能力,彻底改变了自然语言处理领域。本书将深入解析Transformer的核心——自注意力(Self-Attention)机制,以及它如何使得模型在处理序列时能够动态地权衡不同位置的信息。读者将了解其在机器翻译、文本摘要、问答系统等任务中的革命性应用。 第三部分:深度学习的应用与前沿探索 《深度学习:人工智能算法,机器学习奠基之作,AI圣经》并非仅仅停留在理论层面,它更注重将深度学习的强大能力转化为实际应用,并指引读者探索未来的前沿方向。 计算机视觉的突破: 从图像分类、物体检测、语义分割到人脸识别、图像生成,本书将展示深度学习在计算机视觉领域的广泛应用,并分析其背后的具体模型和技术。 自然语言处理的革新: 机器翻译、文本生成、情感分析、问答系统等NLP任务,在深度学习的推动下实现了质的飞跃。本书将深入剖析深度学习模型如何理解和生成人类语言。 强化学习在现实中的应用: 从游戏AI(如AlphaGo)到机器人控制、自动驾驶,本书将探讨强化学习如何在复杂环境中做出智能决策,并学习最优策略。 其他重要领域: 本书还将触及深度学习在推荐系统、语音识别、医疗诊断、金融风控等多个领域的应用,展示其跨行业的普适性和巨大价值。 模型优化与部署: 除了模型的设计与训练,本书还会讨论如何对模型进行优化以提高效率(如模型压缩、量化),以及如何在实际环境中部署这些模型,让深度学习技术真正落地。 伦理、挑战与未来展望: 伴随着深度学习的强大能力,也带来了诸如数据隐私、算法偏见、可解释性等一系列伦理和社会挑战。本书将适时提出这些问题,并展望深度学习的未来发展趋势,例如更高效的模型、更强的泛化能力、以及与人类智能的更深层次融合。 结语:通往智能未来的必读之作 《深度学习:人工智能算法,机器学习奠基之作,AI圣经》是一部集理论深度、技术广度与实践应用为一体的权威著作。它以清晰的逻辑、严谨的论述和丰富的案例,带领读者穿越机器学习的起源,深入探索深度学习的每一个关键算法和模型,并最终领略其在各个领域的璀璨应用。 无论您是渴望入门人工智能领域的初学者,还是寻求深化理解的资深研究者,亦或是希望将AI技术应用于实际业务的开发者和决策者,本书都将是您不可或缺的知识宝库。它不仅教会您“如何做”,更引导您理解“为什么”,帮助您构建起坚实的理论框架和前瞻性的技术视野,从而在日新月异的智能时代中,把握机遇,引领变革,真正成为人工智能浪潮中的弄潮儿。这本“AI圣经”,将是您开启智能未来之旅最可靠的启明灯。

用户评价

评分

拿到这本书的瞬间,我就被它厚重的质感和封面上简洁而富有力量的设计所吸引。当我翻开第一页,那扑面而来的学术气息,以及对深度学习和人工智能领域深邃的洞察,瞬间就点燃了我内心深处的求知欲。我一直对AI的世界充满好奇,但总觉得隔着一层纱,无法窥探到其精髓。这本书就像一把钥匙,为我打开了一扇通往AI核心算法的大门。我迫不及待地想要深入了解那些被誉为“奠基之作”的机器学习理论,以及那些引领AI浪潮的深度学习模型。作者的文字,虽然严谨,却带着一种引人入胜的魅力,仿佛一位经验丰富的导师,循循善诱地引导着我一步步走进这个前沿的科学领域。我期待着能在这本书中找到自己一直以来追寻的答案,并为自己在AI学习的道路上打下坚实的基础。相信通过这本书的学习,我能够更清晰地理解AI的运作机制,掌握其背后的原理,并对未来的AI发展趋势有更深刻的认识。这本书不仅仅是一本技术书籍,更像是一次思想的启迪,一次智慧的探索。

评分

这本书的名字就带着一股“神圣感”,人工智能的圣经,这足以激发我最深层次的探索欲望。我一直对AI领域的发展速度感到惊叹,也对其背后涌现出的各种创新算法充满了好奇。这本书,是否就是那个能够解答我所有疑问的“宝典”?我期待着书中能够详细阐述深度学习的那些核心概念,比如神经网络的结构、反向传播算法的原理、卷积神经网络(CNN)和循环神经网络(RNN)的精妙之处,以及它们是如何在图像识别、自然语言处理等领域取得突破性进展的。我希望通过这本书,能够对这些复杂的算法有一个清晰的、深入的理解,而不仅仅是停留在表面。我想要知道,这些算法是如何被创造出来的?它们是如何不断演进和优化的?它们又将如何塑造我们未来的生活?我希望这本书能够给我带来一种“豁然开朗”的体验,让我真正领略到AI算法的魅力与力量。

评分

这本书的装帧设计非常经典,沉甸甸的分量,仿佛承载着整个AI时代的智慧结晶。我一直认为,想要真正理解一个领域,就必须去追溯它的源头,去学习那些奠定基石的经典理论。而这本书,恰恰满足了我的这个愿望。我渴望通过阅读,能够系统地梳理和理解机器学习的基本原理,那些看似抽象的概念,在作者的笔下,是否会变得生动而易于理解?我尤其对书中可能涉及的关于模型训练、特征工程、以及模型评估等方面的内容充满期待。我希望这本书能够带领我走出那些零散的学习模式,形成一套完整的知识体系。我深知,AI算法的进步,离不开对基础理论的扎实掌握。因此,我愿意花时间和精力,去啃读这本书,去吸收其中的营养,去构建属于自己的AI知识框架。我希望在读完这本书后,能够自信地谈论各种机器学习算法,并能将这些理论知识应用到实际的AI项目中。

评分

说实话,我并不是科班出身,我对人工智能的理解更多是停留在概念层面,总觉得缺少了那份专业和系统。当我看到这本书的名字,尤其是“机器学习奠基之作”这样的描述,我立刻被它吸引了。我感觉这可能是我进入AI领域,打下坚实基础的绝佳机会。我希望这本书能够以一种清晰、易懂的方式,为我梳理机器学习的脉络,让我明白从最基础的算法,如线性回归、逻辑回归,到更复杂的算法,如支持向量机(SVM)、决策树等等,它们各自的原理、优缺点以及适用场景。我特别希望书中能够包含大量的示例和图解,能够帮助我这个初学者更好地理解那些抽象的数学原理和算法模型。我期待着,读完这本书后,我能够真正理解“什么是机器学习”,并且能够开始尝试自己动手实现一些基本的机器学习模型,将理论知识付诸实践。

评分

一直以来,我都对人工智能的潜力感到着迷,并且深信它将是改变未来的关键力量。在众多的AI相关书籍中,这本书的名字,尤其是“AI圣经”这样的标签,让我觉得它可能蕴含着最核心、最前沿的知识。我希望通过这本书,能够深入了解深度学习的最新进展和最激动人心的应用。我期待着书中能够介绍那些引领AI革命的“大模型”,例如Transformer架构以及它在自然语言处理领域的统治地位,还有在计算机视觉领域备受瞩目的各种新型网络结构。我希望能从书中了解到,这些复杂的模型是如何训练出来的,以及它们是如何解决现实世界中的各种复杂问题的。我希望这本书能够给我带来一种前沿的视野,让我能够站在AI发展的最前沿,去理解和把握未来的趋势,并从中找到自己可以贡献的力量。

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.coffeedeals.club All Rights Reserved. 静流书站 版权所有