Simon Haykin 于1953年获得英国伯明翰大学博士学位,目前为加拿大McMaster大学电子与计算机工程系教授、通信研究实验室主任。他是国际电子电气工程界的著名学者,曾获得IEEE McNaughton金奖。他是加拿大皇家学会院士、IEEE会士,在神经网络、通信、自适应滤波器等领域成果颇丰,著有多部标准教材。
本书是关于神经网络的全面的、彻底的、可读性很强的、最新的论述。全书共15章,主要内容包括Rosenblatt感知器、通过回归建立模型、最小均方算法、多层感知器、核方法和径向基函数网络、支持向量机、正则化理论、主分量分析、自组织映射、信息论学习模型、动态规划、神经动力学、动态系统状态估计的贝叶斯滤波等。
本书适合作为高等院校计算机相关专业研究生及本科生的教材,也可供相关领域的工程技术人员参考。
Provides a comprehensive foundation of neural networks, recognizing the multidisciplinary nature of the subject, supported with examples, computer-oriented experiments, end of chapter problems, and a bibliography. DLC: Neural networks (Computer science).
##我的研究生课程Neural Networks就是用的本书第二版。因为教授说了,他不喜欢更新的第三版。 感觉本书基本涵盖了神经网络的许多基础部分和重要方面。像Back Propagation, Radial-Basis Function,Self-Organizing Maps,以及single neuron中的Hebbian Learning, Competitive L...
评分 评分##原书:Neural Networks and Learning Machines 土豪,注意,这是 Learning Machines, 而不是 Machine Learning 神经网络与学习机会更好。
评分 评分##是很全面的机器学习理论书籍,不过大多数读者是看不明白的,翻译也很一般。 p92 三个标准化步骤的结果,消除均值、去相关性以及协方差均衡 是很全面的机器学习理论书籍。 p94 对于神经元,训练率应该与突触数量成反比。 p92 三个标准化步骤的结果,消除均值、去相关性以及协方...
评分前面几章将神经网络的写得很好!
评分 评分 评分##这本书还算有点名气,有不少的AI书籍的参考文献都提及了它。书名虽然是foundation,但却是偏重于数学的。对于ANN的几乎所有原理都没有给出可以在直觉上理解的原因,比如,为什么对于w的初始化要随机且尽可能小;冲向量的直观解释是什么;对于分布不均匀的结果类别应该如何对w正...
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.coffeedeals.club All Rights Reserved. 静流书站 版权所有