内容简介
Definition、Averages、Multivariate distributions、Addition of stochastic variables、Transformation of variables、The Gaussian distribution、The central limit theorem、Definition、The Poisson distribution、Alternative description of random events、The inverse formula、The correlation functions、Waiting times、Factorial correlation functions等等。
内页插图
目录
PREFACE TO THE FIRST EDITION
PREFACE TO THE SECOND EDITION
ABBREVIATED REFERENCES
PREFACE TO THE THIRD EDITION
1. STOCHASTIC VARIABLES
1. Definition
2. Averages
3. Multivariate distributions
4. Addition of stochastic variables
5. Transformation of variables
6. The Gaussian distribution
7. The central limit theorem
Ⅱ. RANDOM EVENTS
1. Definition
2. The Poisson distribution
3. Alternative description of random events
4. The inverse formula
5. The correlation functions
6. Waiting times
7. Factorial correlation functions
Ⅲ. STOCHASTIC PROCESSES
1. Definition
2. Stochastic processes in physics
3. Fourier transformation of stationary processes.
4. The hierarchy of distribution functions
5. The vibrating string and random fields
6. Branching processes
Ⅳ. MARKOV PROCESSES
1. The Markov property
2. The Chapman-Kolmogorov equation
3. Stationary Markov processes
4. The extraction of a subensemble
5. Markov chains
6. The decay process
Ⅴ. THE MASTER EQUATION
1. Derivation
2. The class of W-matrices
3. The long-time limit
4. Closed, isolated, physical systems
5. The increase of entropy
6. Proof of detailed balance
7. Expansion in eigenfunctions
8. The macroscopic equation
9. The adjoint equation
10. Other equations related to the master equation
Ⅵ. ONE-STEP PROCESSES
1. Definition; the Poisson process
2. Random walk with continuous time
3. General properties of one-step processes
4. Examples of linear one-step processes
5. Natural boundaries
6. Solution of linear one-step processes with natural boundaries
7. Artificial boundaries
8. Artificial boundaries and normal modes
9. Nonlinear one-step processes
Ⅶ. CHEMICAL REACTIONS
1. Kinematics of chemical reactions
2. Dynamics of chemical reactions.
3. The stationary solution
4. Open systems
5. Unimolecular reactions
6. Collective systems
7. Composite Markov processes
Ⅷ. THE FOKKER-PLANCK EQUATION
1. Introduction
2. Derivation of the Fokker-Planck equation
3. Brownian motion
4. The Rayleigh particle
5. Application to one-step processes
6. The multivariate Fokker-Planck equation
7. Kramers equation
Ⅸ. THE LANGEVIN APPROACH
1. Langevin treatment of Brownian motion
2. Applications
3. Relation to Fokker-Planck equation
4. The Langevin approach
5. Discussion of the It6——Stratonovich dilemma
6. Non-Gaussian white noise
7. Colored noise
Ⅹ. THE EXPANSION OF THE MASTER EQUATION
1. Introduction to the expansion
2. General formulation of the expansion method,
3. The emergence of the macroscopic law
4. The linear noise approximation
5. Expansion of a multivariate master equation..
6. Higher orders
Ⅺ. THE DIFFUSION TYPE
1. Master equations of diffusion type
2. Diffusion in an external field
3. Diffusion in an inhomogeneous medium
4. Multivariate diffusion equation
5. The limit of zero fluctuations
Ⅻ. FIRST-PASSAGE PROBLEMS
1. The absorbing boundary approach
2. The approach through the adjoint equation-Discrete case
3. The approach through the adjoint equation-Continuous case
4. The renewal approach
5. Boundaries of the Smoluchowski equation
6. First passage of non-Markov processes
7. Markov processes with large jumps
ⅩⅢ. UNSTABLE SYSTEMS
1. The bistable system
2. The escape time
3. Splitting probability
4. Diffusion in more dimensions
5. Critical fluctuations
6. Kramers escape problem
7. Limit cycles and fluctuations.
ⅩⅣ. FLUCTUATIONS IN CONTINUOUS SYSTEMS
1. Introduction
2. Diffusion noise
3. The method of compounding moments
4. Fluctuations in phase space density
5. Fluctuations and the Boltzmann equation
ⅩⅤ. THE STATISTICS OF JUMP EVENTS
1. Basic formulae and a simple example
2. Jump events in nonlinear systems
3. Effect of incident photon statistics
4. Effect of incident photon statistics - continued.
ⅩⅥ. STOCHASTIC DIFFERENTIAL EQUATIONS
1. Definitions
2. Heuristic treatment of multiplicative equations.
3. The cumulant expansion introduced
4. The general cumulant expansion
5. Nonlinear stochastic differential equations
6. Long correlation times
ⅩⅦ. STOCHASTIC BEHAVIOR OF QUANTUM SYSTEMS
1. Quantum probability
2. The damped harmonic oscillator
3. The elimination of the bath
4. The elimination of the bath-continued
5. The Schrodinger-Langevin equation and the quantum master equation
6. A new approach to noise
7. Internal noise
SUBJECT INDEX
精彩书摘
A "random number" or "stochastic variable" is an object X defined by
a. a set of possible values (called "range", "set of states", "sample space"or "phase space");
b. a probability distribution over this set.
Ad a. The set may be discrete, e.g.: heads or tails; the number of electronsin the conduction band of a semiconductor; the number of molecules of acertain component in a reacting mixture. Or the set may be continuous in agiven interval: one velocity component of a Brownian particle (interval-∞+∞); the kinetic energy of that particle (0,∞); the potential differencebetween the end points of an electrical resistance (-∞, +∞). Finally the setmay be partly discrete, partly continuous, e.g., the energy of an electron inthe presence of binding centers. Moreover the set of states may be multidimen-sional; in this case X is often conveniently written as a vector X. Examples:X may stand for the three velocity components of a Brownian particle; orfor the collection of all numbers of molecules of the various components ina reacting mixture; or the numbers of electrons trapped in the various speciesof impurities in a semiconductor.
For simplicity we shall often use the notation for discrete states or for acontinuous one-dimensional range and leave it to the reader to adapt thenotation to other cases.
前言/序言
The interest in fluctuations and in the stochastic methods for describing themhas grown enormously in the last few decades.The number of articles scatteredin the literature of various disciplines must run to thousands,and special journalsare devoted to the subject.Yet the physicist or chemist who wants to becomeacquainted with the field cannot easily find a suitable introduction.He reads theseminal articles of Wang and Uhlenbeck and Of Chandrasekhar.which are almostforty years old,and he culls some useful information from the books ofFeller,Bharucha.Reid.Stratonovich,and a few others.Apart from that he is confrontedwith a forbidding mass of mathematical literature.much of which is of littlerelevance to his needs.Tllis book is an attempt to fill this gap in the literature.
The first part covets the main points of the classical material.Its aim is to provide physicists and chemists with a coherent and sufficiently complete frame-work,in a language that is familiar to them.A thorough intuitive understandingofthe material is held to be a more important tool for research than mathemat-ical rigor and generality.A physical system at best only approximately flulfillsthe mathematical conditions on which rigorous proofs are built,and a physicistshould be constantly aware of the approximate nature of his calculations.(Forinstance.Kolmogorovs derivation of the Fokke卜.Planck equation does not tellhim for which actual systems this equation may be used.)Nor is he interestedin the most generai formulations,but a thorough insight in special cases willenablehimto extendthetheorytoother caseswhentheneed arises.Accordinglythe theory is here developed in close connection with numerous applications andexamples.
The second part,starting with chapter IX『now chapter Xl,is concerned wimfluctuations in nonlinear systems.This subject involves a number of conceptualdimculties.first pointed out bv D.K.C.MacDonald.They are of a Physical ratherthan a mathematical nature.Much confusion is caused by the still prevailing viewthat nonlinear fluctuations can be approached from the same physical starting point as linear ones and merely require more elaborate mathematics.In actuaifact.what is needed is a firmer physical basis and a more detailed knowledge ofthe physical system than required for the study oflinear noise.This is the subject of the second part,which has more the character of a monograph and inevitablycontains much of my own work.
随机过程在物理与化学中的应用:理论与实践的新视角 图书简介 本书旨在为对随机过程在物理和化学领域中的应用感兴趣的读者提供一个全面而深入的概述。它并非聚焦于某一特定版本的教材,而是力求构建一个广阔的知识框架,涵盖该领域的核心概念、关键模型以及实际应用。本书的编排侧重于理论的严谨性与实际问题的解决能力相结合,旨在培养读者运用随机过程工具分析复杂系统的能力。 第一部分:随机过程的基础理论与数学工具 本部分奠定了理解随机过程在物理和化学中应用所需的数学基础。重点在于建立清晰的概率论和测度论视角下的随机过程框架。 第一章:概率论回顾与随机变量的进阶概念 本章首先回顾概率空间、随机变量和期望的经典定义。随后,深入探讨高阶矩、条件期望的现代阐述,以及随机变量序列的收敛性(依概率收敛、依平方可积收敛、几乎必然收敛)在描述物理系统演化中的意义。特别关注随机向量的联合分布和边际分布,为处理多变量系统做准备。 第二章:马尔可夫链:离散时间框架 本章集中介绍离散时间马尔可夫链(DTMC)。详细阐述转移概率矩阵、状态空间(有限与可数无限),并对不可约性、遍历性(平稳分布的唯一性与存在性)进行严格的数学推导。引入吸收态、返还时间、首次通过时间的精确计算方法。在应用层面,探讨它们如何模型化化学反应中的分子态跃迁或物理系统中晶格点的状态变化。 第三章:连续时间马尔可夫过程(CTMP) 本章将时间参数扩展到连续域,引入生成元矩阵(Q矩阵)和微分方程(Kolmogorov 前向和后向方程)。重点分析了无穷小生成元与泊松过程之间的联系。针对物理化学中的反应速率理论,详细讨论了平衡分布的确定及其稳定性分析。 第四章:随机微分方程的入门:维纳过程与布朗运动 这是理解粒子扩散和涨落现象的基石。本章从运动学角度引入布朗运动,并严格定义伊藤积分和伊藤公式。详细分析了随机微分方程(SDE)的解的存在性与唯一性。特别关注斯特拉托诺维奇积分与伊藤积分的转换,及其在处理物理噪声时的实际考量。 第二部分:核心随机模型及其在物理学中的应用 本部分将理论工具应用于具体的物理现象,展示随机过程如何揭示宏观规律背后的微观随机性。 第五章:扩散过程与福克-普朗克方程 本章深入探讨了连续扩散过程,特别是基于SDE导出的偏微分方程——福克-普朗克方程(FPE)。详细分析了FPE在描述粒子密度随时间和空间演化中的作用。通过变分原理和势能景观(Potential Landscape)的概念,解释了系统如何倾向于到达具有最大熵(对应于玻尔兹曼分布)的稳态。 第六章:涨落-耗散定理与噪声的数学描述 本章关注物理系统中噪声的来源与影响。详细阐述了朗之万方程(Langevin Equation)与福克-普朗克方程的等价性。通过爱因斯坦关系和相关的涨落-耗散定理,将宏观粘滞系数或阻尼与微观的随机力关联起来。探讨了白噪声、有色噪声的数学建模及其在模拟复杂介质中的应用。 第七章:随机游走与临界现象 随机游走是研究输运性质和相变的基础模型。本章分析了标准随机游走(Simple Random Walk)的扩散率和均方位移(MSD)。进一步讨论了在有偏和受限几何结构下的随机游走,特别是它们如何映射到晶格模型中的相变行为,例如Percolation理论的随机性基础。 第三部分:随机过程在化学动力学与信息论中的深化 本部分拓展视野至化学反应网络和统计推断领域,展现随机过程在现代交叉科学中的重要性。 第八章:化学反应网络与化学主方程 针对体相反应和催化反应,本章引入化学主方程(Chemical Master Equation, CME),这是一个基于CTMP的动力学方程。重点分析了在分子数量有限(即存在“有限尺寸效应”)时,CME如何精确描述反应系统的随机性,与经典的(确定性)质量作用定律进行对比。引入随机模拟方法,如Gillespie算法(也称化学k-算法),用于直接模拟CME。 第九章:泊松过程与分支过程 泊松过程作为事件计数过程的基准模型,被用于描述稀疏、不相关的事件序列。本章详述其强度函数的设定,以及在物理中对光子计数、放射性衰变的建模。分支过程则被用于分析链式反应或分子复制过程的增长与灭绝概率,这在理论生物物理中具有重要意义。 第十章:马尔可夫链蒙特卡洛(MCMC)方法 本章侧重于随机过程作为计算工具的应用。详细介绍Metropolis-Hastings算法和Gibbs采样器的构建原理,它们本质上是构造一个具有特定平稳分布(目标概率分布)的马尔可夫链。讨论其在计算复杂统计物理模型(如伊辛模型)配分函数或高维积分中的有效性与收敛诊断。 结语:随机过程的前沿方向 本书在最后部分展望了随机过程在当前研究热点中的作用,包括随机网络动力学、信息论中的随机编码、以及随机过程在量子系统中的非平衡态描述等。旨在激励读者将所学知识应用于解决当前未解的复杂系统问题。 本书特点: 理论深度与广度兼备: 确保对基础概念的理解扎实,同时覆盖了从经典扩散到现代计算方法的广泛主题。 强调模型间的联系: 系统地展示了马尔可夫链、布朗运动、FPE和朗之万方程之间的内在联系和相互转化关系。 面向应用的设计: 每一个理论概念都辅以具体的物理或化学实例进行阐释,增强读者的实际操作能力。