內容簡介
Definition、Averages、Multivariate distributions、Addition of stochastic variables、Transformation of variables、The Gaussian distribution、The central limit theorem、Definition、The Poisson distribution、Alternative description of random events、The inverse formula、The correlation functions、Waiting times、Factorial correlation functions等等。
內頁插圖
目錄
PREFACE TO THE FIRST EDITION
PREFACE TO THE SECOND EDITION
ABBREVIATED REFERENCES
PREFACE TO THE THIRD EDITION
1. STOCHASTIC VARIABLES
1. Definition
2. Averages
3. Multivariate distributions
4. Addition of stochastic variables
5. Transformation of variables
6. The Gaussian distribution
7. The central limit theorem
Ⅱ. RANDOM EVENTS
1. Definition
2. The Poisson distribution
3. Alternative description of random events
4. The inverse formula
5. The correlation functions
6. Waiting times
7. Factorial correlation functions
Ⅲ. STOCHASTIC PROCESSES
1. Definition
2. Stochastic processes in physics
3. Fourier transformation of stationary processes.
4. The hierarchy of distribution functions
5. The vibrating string and random fields
6. Branching processes
Ⅳ. MARKOV PROCESSES
1. The Markov property
2. The Chapman-Kolmogorov equation
3. Stationary Markov processes
4. The extraction of a subensemble
5. Markov chains
6. The decay process
Ⅴ. THE MASTER EQUATION
1. Derivation
2. The class of W-matrices
3. The long-time limit
4. Closed, isolated, physical systems
5. The increase of entropy
6. Proof of detailed balance
7. Expansion in eigenfunctions
8. The macroscopic equation
9. The adjoint equation
10. Other equations related to the master equation
Ⅵ. ONE-STEP PROCESSES
1. Definition; the Poisson process
2. Random walk with continuous time
3. General properties of one-step processes
4. Examples of linear one-step processes
5. Natural boundaries
6. Solution of linear one-step processes with natural boundaries
7. Artificial boundaries
8. Artificial boundaries and normal modes
9. Nonlinear one-step processes
Ⅶ. CHEMICAL REACTIONS
1. Kinematics of chemical reactions
2. Dynamics of chemical reactions.
3. The stationary solution
4. Open systems
5. Unimolecular reactions
6. Collective systems
7. Composite Markov processes
Ⅷ. THE FOKKER-PLANCK EQUATION
1. Introduction
2. Derivation of the Fokker-Planck equation
3. Brownian motion
4. The Rayleigh particle
5. Application to one-step processes
6. The multivariate Fokker-Planck equation
7. Kramers equation
Ⅸ. THE LANGEVIN APPROACH
1. Langevin treatment of Brownian motion
2. Applications
3. Relation to Fokker-Planck equation
4. The Langevin approach
5. Discussion of the It6——Stratonovich dilemma
6. Non-Gaussian white noise
7. Colored noise
Ⅹ. THE EXPANSION OF THE MASTER EQUATION
1. Introduction to the expansion
2. General formulation of the expansion method,
3. The emergence of the macroscopic law
4. The linear noise approximation
5. Expansion of a multivariate master equation..
6. Higher orders
Ⅺ. THE DIFFUSION TYPE
1. Master equations of diffusion type
2. Diffusion in an external field
3. Diffusion in an inhomogeneous medium
4. Multivariate diffusion equation
5. The limit of zero fluctuations
Ⅻ. FIRST-PASSAGE PROBLEMS
1. The absorbing boundary approach
2. The approach through the adjoint equation-Discrete case
3. The approach through the adjoint equation-Continuous case
4. The renewal approach
5. Boundaries of the Smoluchowski equation
6. First passage of non-Markov processes
7. Markov processes with large jumps
ⅩⅢ. UNSTABLE SYSTEMS
1. The bistable system
2. The escape time
3. Splitting probability
4. Diffusion in more dimensions
5. Critical fluctuations
6. Kramers escape problem
7. Limit cycles and fluctuations.
ⅩⅣ. FLUCTUATIONS IN CONTINUOUS SYSTEMS
1. Introduction
2. Diffusion noise
3. The method of compounding moments
4. Fluctuations in phase space density
5. Fluctuations and the Boltzmann equation
ⅩⅤ. THE STATISTICS OF JUMP EVENTS
1. Basic formulae and a simple example
2. Jump events in nonlinear systems
3. Effect of incident photon statistics
4. Effect of incident photon statistics - continued.
ⅩⅥ. STOCHASTIC DIFFERENTIAL EQUATIONS
1. Definitions
2. Heuristic treatment of multiplicative equations.
3. The cumulant expansion introduced
4. The general cumulant expansion
5. Nonlinear stochastic differential equations
6. Long correlation times
ⅩⅦ. STOCHASTIC BEHAVIOR OF QUANTUM SYSTEMS
1. Quantum probability
2. The damped harmonic oscillator
3. The elimination of the bath
4. The elimination of the bath-continued
5. The Schrodinger-Langevin equation and the quantum master equation
6. A new approach to noise
7. Internal noise
SUBJECT INDEX
精彩書摘
A "random number" or "stochastic variable" is an object X defined by
a. a set of possible values (called "range", "set of states", "sample space"or "phase space");
b. a probability distribution over this set.
Ad a. The set may be discrete, e.g.: heads or tails; the number of electronsin the conduction band of a semiconductor; the number of molecules of acertain component in a reacting mixture. Or the set may be continuous in agiven interval: one velocity component of a Brownian particle (interval-∞+∞); the kinetic energy of that particle (0,∞); the potential differencebetween the end points of an electrical resistance (-∞, +∞). Finally the setmay be partly discrete, partly continuous, e.g., the energy of an electron inthe presence of binding centers. Moreover the set of states may be multidimen-sional; in this case X is often conveniently written as a vector X. Examples:X may stand for the three velocity components of a Brownian particle; orfor the collection of all numbers of molecules of the various components ina reacting mixture; or the numbers of electrons trapped in the various speciesof impurities in a semiconductor.
For simplicity we shall often use the notation for discrete states or for acontinuous one-dimensional range and leave it to the reader to adapt thenotation to other cases.
前言/序言
The interest in fluctuations and in the stochastic methods for describing themhas grown enormously in the last few decades.The number of articles scatteredin the literature of various disciplines must run to thousands,and special journalsare devoted to the subject.Yet the physicist or chemist who wants to becomeacquainted with the field cannot easily find a suitable introduction.He reads theseminal articles of Wang and Uhlenbeck and Of Chandrasekhar.which are almostforty years old,and he culls some useful information from the books ofFeller,Bharucha.Reid.Stratonovich,and a few others.Apart from that he is confrontedwith a forbidding mass of mathematical literature.much of which is of littlerelevance to his needs.Tllis book is an attempt to fill this gap in the literature.
The first part covets the main points of the classical material.Its aim is to provide physicists and chemists with a coherent and sufficiently complete frame-work,in a language that is familiar to them.A thorough intuitive understandingofthe material is held to be a more important tool for research than mathemat-ical rigor and generality.A physical system at best only approximately flulfillsthe mathematical conditions on which rigorous proofs are built,and a physicistshould be constantly aware of the approximate nature of his calculations.(Forinstance.Kolmogorovs derivation of the Fokke蔔.Planck equation does not tellhim for which actual systems this equation may be used.)Nor is he interestedin the most generai formulations,but a thorough insight in special cases willenablehimto extendthetheorytoother caseswhentheneed arises.Accordinglythe theory is here developed in close connection with numerous applications andexamples.
The second part,starting with chapter IX『now chapter Xl,is concerned wimfluctuations in nonlinear systems.This subject involves a number of conceptualdimculties.first pointed out bv D.K.C.MacDonald.They are of a Physical ratherthan a mathematical nature.Much confusion is caused by the still prevailing viewthat nonlinear fluctuations can be approached from the same physical starting point as linear ones and merely require more elaborate mathematics.In actuaifact.what is needed is a firmer physical basis and a more detailed knowledge ofthe physical system than required for the study oflinear noise.This is the subject of the second part,which has more the character of a monograph and inevitablycontains much of my own work.
隨機過程在物理與化學中的應用:理論與實踐的新視角 圖書簡介 本書旨在為對隨機過程在物理和化學領域中的應用感興趣的讀者提供一個全麵而深入的概述。它並非聚焦於某一特定版本的教材,而是力求構建一個廣闊的知識框架,涵蓋該領域的核心概念、關鍵模型以及實際應用。本書的編排側重於理論的嚴謹性與實際問題的解決能力相結閤,旨在培養讀者運用隨機過程工具分析復雜係統的能力。 第一部分:隨機過程的基礎理論與數學工具 本部分奠定瞭理解隨機過程在物理和化學中應用所需的數學基礎。重點在於建立清晰的概率論和測度論視角下的隨機過程框架。 第一章:概率論迴顧與隨機變量的進階概念 本章首先迴顧概率空間、隨機變量和期望的經典定義。隨後,深入探討高階矩、條件期望的現代闡述,以及隨機變量序列的收斂性(依概率收斂、依平方可積收斂、幾乎必然收斂)在描述物理係統演化中的意義。特彆關注隨機嚮量的聯閤分布和邊際分布,為處理多變量係統做準備。 第二章:馬爾可夫鏈:離散時間框架 本章集中介紹離散時間馬爾可夫鏈(DTMC)。詳細闡述轉移概率矩陣、狀態空間(有限與可數無限),並對不可約性、遍曆性(平穩分布的唯一性與存在性)進行嚴格的數學推導。引入吸收態、返還時間、首次通過時間的精確計算方法。在應用層麵,探討它們如何模型化化學反應中的分子態躍遷或物理係統中晶格點的狀態變化。 第三章:連續時間馬爾可夫過程(CTMP) 本章將時間參數擴展到連續域,引入生成元矩陣(Q矩陣)和微分方程(Kolmogorov 前嚮和後嚮方程)。重點分析瞭無窮小生成元與泊鬆過程之間的聯係。針對物理化學中的反應速率理論,詳細討論瞭平衡分布的確定及其穩定性分析。 第四章:隨機微分方程的入門:維納過程與布朗運動 這是理解粒子擴散和漲落現象的基石。本章從運動學角度引入布朗運動,並嚴格定義伊藤積分和伊藤公式。詳細分析瞭隨機微分方程(SDE)的解的存在性與唯一性。特彆關注斯特拉托諾維奇積分與伊藤積分的轉換,及其在處理物理噪聲時的實際考量。 第二部分:核心隨機模型及其在物理學中的應用 本部分將理論工具應用於具體的物理現象,展示隨機過程如何揭示宏觀規律背後的微觀隨機性。 第五章:擴散過程與福剋-普朗剋方程 本章深入探討瞭連續擴散過程,特彆是基於SDE導齣的偏微分方程——福剋-普朗剋方程(FPE)。詳細分析瞭FPE在描述粒子密度隨時間和空間演化中的作用。通過變分原理和勢能景觀(Potential Landscape)的概念,解釋瞭係統如何傾嚮於到達具有最大熵(對應於玻爾茲曼分布)的穩態。 第六章:漲落-耗散定理與噪聲的數學描述 本章關注物理係統中噪聲的來源與影響。詳細闡述瞭朗之萬方程(Langevin Equation)與福剋-普朗剋方程的等價性。通過愛因斯坦關係和相關的漲落-耗散定理,將宏觀粘滯係數或阻尼與微觀的隨機力關聯起來。探討瞭白噪聲、有色噪聲的數學建模及其在模擬復雜介質中的應用。 第七章:隨機遊走與臨界現象 隨機遊走是研究輸運性質和相變的基礎模型。本章分析瞭標準隨機遊走(Simple Random Walk)的擴散率和均方位移(MSD)。進一步討論瞭在有偏和受限幾何結構下的隨機遊走,特彆是它們如何映射到晶格模型中的相變行為,例如Percolation理論的隨機性基礎。 第三部分:隨機過程在化學動力學與信息論中的深化 本部分拓展視野至化學反應網絡和統計推斷領域,展現隨機過程在現代交叉科學中的重要性。 第八章:化學反應網絡與化學主方程 針對體相反應和催化反應,本章引入化學主方程(Chemical Master Equation, CME),這是一個基於CTMP的動力學方程。重點分析瞭在分子數量有限(即存在“有限尺寸效應”)時,CME如何精確描述反應係統的隨機性,與經典的(確定性)質量作用定律進行對比。引入隨機模擬方法,如Gillespie算法(也稱化學k-算法),用於直接模擬CME。 第九章:泊鬆過程與分支過程 泊鬆過程作為事件計數過程的基準模型,被用於描述稀疏、不相關的事件序列。本章詳述其強度函數的設定,以及在物理中對光子計數、放射性衰變的建模。分支過程則被用於分析鏈式反應或分子復製過程的增長與滅絕概率,這在理論生物物理中具有重要意義。 第十章:馬爾可夫鏈濛特卡洛(MCMC)方法 本章側重於隨機過程作為計算工具的應用。詳細介紹Metropolis-Hastings算法和Gibbs采樣器的構建原理,它們本質上是構造一個具有特定平穩分布(目標概率分布)的馬爾可夫鏈。討論其在計算復雜統計物理模型(如伊辛模型)配分函數或高維積分中的有效性與收斂診斷。 結語:隨機過程的前沿方嚮 本書在最後部分展望瞭隨機過程在當前研究熱點中的作用,包括隨機網絡動力學、信息論中的隨機編碼、以及隨機過程在量子係統中的非平衡態描述等。旨在激勵讀者將所學知識應用於解決當前未解的復雜係統問題。 本書特點: 理論深度與廣度兼備: 確保對基礎概念的理解紮實,同時覆蓋瞭從經典擴散到現代計算方法的廣泛主題。 強調模型間的聯係: 係統地展示瞭馬爾可夫鏈、布朗運動、FPE和朗之萬方程之間的內在聯係和相互轉化關係。 麵嚮應用的設計: 每一個理論概念都輔以具體的物理或化學實例進行闡釋,增強讀者的實際操作能力。