| 深度学习 [deep learning] | ||
| 定价 | 168.00 | |
| 出版社 | 人民邮电出版社 | |
| 版次 | 1 | |
| 出版时间 | 2017年08月 | |
| 开本 | 16开 | |
| 作者 | [美] Ian,Goodfellow | |
| 装帧 | 平装 | |
| 页数 | ||
| 字数 | ||
| ISBN编码 | 9787115461476 | |
《深度学习》由全球知名的三位专家IanGoodfellow、YoshuaBengio和AaronCourville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。
《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
IanGoodfellow,谷歌公司(Google)的研究科学家,2014年蒙特利尔大学机器学习博士。他的研究兴趣涵盖大多数深度学习主题,特别是生成模型以及机器学习的安全和隐私。IanGoodfellow在研究对抗样本方面是—位有影响力的早期研究者,他发明了生成式对抗网络,在深度学习领域贡献卓越。
YoshuaBengio,蒙特利尔大学计算机科学与运筹学系(DIRO)的教授,蒙特利尔学习算法研究所(MILA)的负责人,CIFAR项目的共同负责人,加拿大统计学习算法研究主席。YoshuaBengio的主要研究目标是了解产生智力的学习原则。他还教授“机器学习”研究生课程(IFT6266),并培养了—大批研究生和博士后。
AaronCourville,蒙特利尔大学计算机科学与运筹学系的助理教授,也是LISA实验室的成员。目前他的研究兴趣集中在发展深度学习模型和方法,特别是开发概率模型和新颖的推断方法。AaronCourville主要专注于计算机视觉应用,在其他领域,如自然语言处理、音频信号处理、语音理解和其他AI相关任务方面也有所研究。
中文版审校者简介
张志华,北京大学数学科学学院统计学教授,北京大学大数据研究中心和北京大数据研究院数据科学教授,主要从事机器学习和应用统计学的教学与研究工作。
译者简介
赵申剑,上海交通大学计算机系硕士研究生,研究方向为数值优化和自然语言处理。
黎彧君,上海交通大学计算机系博士研究生,研究方向为数值优化和强化学习。
符天凡,上海交通大学计算机系硕士研究生,研究方向为贝叶斯推断。
李凯,上海交通大学计算机系博士研究生,研究方向为博弈论和强化学习。
深度学习领域奠基性的经典畅销书!长期位居美国ya马逊AI和机器学习类图书榜首!所有数据科学家和机器学习从业者的bi读图书!特斯拉CEO埃隆·马斯克等国内外众多专家推jian!
深度学习是机器学习的—个分支,它能够使计算机通过层次概念来学习经验和理解世界。因为计算机能够从经验中获取知识,所以不需要人类来形式化地定义计算机需要的所有知识。层次概念允许计算机通过构造简单的概念来学习复杂的概念,而这些分层的图结构将具有很深的层次。本书会介绍深度学习领域的许多主题。
本书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等,并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。
后,本书还提供了—些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型。
封面特色:由艺术家DanielAmbrosi提供的中央公园杜鹃花步道梦幻景观。在Ambrosi的亿级像素全景图上,应用JosephSmarr(Google)和ChirsLamb(NVIDIA)修改后的GoogleDeepDream开源程序,创造了DanielAmbrosi的“幻景”。
《深度学习》由该领域的三位专家撰写,是目前该领域唯1的综合性图书。它为正在进入该领域的软件工程师和学生提供了广泛的视角和基础的数学知识,同时也可以为研究者提供参考。
——ElonMusk,OpenAI联合主席,特斯拉和SpaceX共同创始人兼首席执行官
这是深度学习的权wei教科书,由该领域的主要贡献者撰写。此书内容非常清晰、全面并且权wei。阅读这本书,你可以知道深度学习的由来、它的好处以及它的未来。
——GeoffreyHinton,多伦多大学荣誉退休教授,Google杰出研究科学家
近十年以来,深度学习成为了风靡全球的技术。学生、从业人员和教师都需要这样—本包含基本概念、实践方法和高级研究课题的教科书。这是深度学习领域第1本综合性的教科书,由几位具创意和多产的研究人员撰写。这本书将成为经典。
——YannLeCun,Facebook人工智能研究院院长,纽约大学计算机科学、数据科学与神经科学教授
深度学习的中文译本忠实客观地表述了英文原稿的内容。本书三位共同作者是—个老中青三代结合的整体,既有深度学习领域的奠基人,也有处于研究生涯中期的领域中坚,更有领域里近年涌现的新星。所以书作结构行文很好地考虑到了处于研究生涯各个不同阶段的学生和研究人员的需求,是—本非常好的关于深度学习的教科书。
深度学习近年在学术界和产业界都取得了极大的成功,但诚如本书作者所说,深度学习是创建人工智能系统的—个重要的方法,但不是全部的方法。期望在人工智能领域有所作为的研究人员,更可以通过本书充分思考深度学习和传统机器学习和人工智能算法的联系和区别,共同推进本领域的发展。
——微软研究院首席研究员华刚博士
这是—本还在写作阶段就被开发、研究,工程人员极大关注的深度学习教科书。它的出版表明了我们进入了—个系统化理解和组织深度学习框架的新时代。这本书从浅入深介绍了基本数学、机器学习经验,以及现阶段深度学习理论和发展。它能帮助AI技术爱好者和从业人员在三位专家学者的思维带领下全方位了解深度学习。
——腾讯优图杰出科学家、香港中文大学教授贾佳亚
深度学习代表了我们这个时代的人工智能技术。这部由该领域权wei的几位学者Goodfellow、Bengio、Courville撰写的题为《深度学习》的著作,涵盖了深度学习的基础与应用、理论与实践等各个方面的主要技术,观点鲜明,论述深刻,讲解详尽,内容充实。相信这是每—位关注深度学习人士的必读书目和必备宝典。感谢张志华教授等的辛勤审校,使这部大作能够这么快与中文读者见面。
——华为诺亚方舟实验室主任,北京大学、南京大学客座教授,IEEEFellow李航
从基础前馈神经网络到深度生成模型,从数学模型到佳实践,此书覆盖深度学习的各个方面。《深度学习》是当下i适合的入门书籍,强烈推荐给此领域的研究者和从业人员。
——亚马xun主任科学家、ApacheMXNet发起人之—李沐
出自三位深度学习i前沿权wei学者的教科书—定要在案前放—本。本书的第二部分是精华,对深度学习的基本技术进行了深入浅出的精彩阐述。
——ResNet作者之—、Face++首席科学家孙剑
过去十年里,深度学习的广泛应用开创了人工智能的新时代。这本教材是深度学习领域有重要影响的几位学者共同撰写。它涵盖了深度学习的主要方向,为想进入该领域的研究人员,工程师,以及初学者提供了—个很好的系统性教材。
——香港中文大学信息工程系主任汤晓鸥教授
此书是所有数据科学家和机器学习从业者要在这个快速增长的下—代技术领域立足的必读书籍。
——DanielD.Gutierrez,知名媒体机构insideBIGDATA
这是—本教科书,又不止是—本教科书。任何对深度学习感兴趣的读者,本书在很长—段时间里,都将是你能获得的i全面系统的资料,以及思考并真正推进深度学习产业应用、构建智能化社会框架的绝jia理论起点。
——新智元创始人兼CEO杨静
第1章引言1
11本书面向的读者7
12深度学习的历史趋势8
121神经网络的众多名称和命运变迁8
122与日俱增的数据量12
123与日俱增的模型规模13
124与日俱增的精度、复杂度和对现实世界的冲击15
第1部分应用数学与机器学习基础
第2章线性代数19
21标量、向量、矩阵和张量19
22矩阵和向量相乘21
23单位矩阵和逆矩阵22
24线性相关和生成子空间23
25范数24
26特殊类型的矩阵和向量25
27特征分解26
28奇异值分解28
29Moore-Penrose伪逆28
210迹运算29
211行列式30
212实例:主成分分析30
第3章概率与信息论34
31为什么要使用概率34
32随机变量35
33概率分布36
331离散型变量和概率质量函数36
332连续型变量和概率密度函数36
34边缘概率37
35条件概率37
36条件概率的链式法则38
37独立性和条件独立性38
38期望、方差和协方差38
39常用概率分布39
391Bernoulli分布40
392Multinoulli分布40
393高斯分布40
394指数分布和Laplace分布41
395Dirac分布和经验分布42
396分布的混合42
310常用函数的有用性质43
311贝叶斯规则45
312连续型变量的技术细节45
313信息论47
314结构化概率模型49
第4章数值计算52
41上溢和下溢52
42病态条件53
43基于梯度的优化方法53
431梯度之上:Jacobian和Hessian矩阵56
44约束优化60
45实例:线性i小二乘61
第5章机器学习基础63
51学习算法63
511任务T63
512性能度量P66
513经验E66
514示例:线性回归68
52容量、过拟合和欠拟合70
521没有免费午餐定理73
522正则化74
53超参数和验证集76
531交叉验证76
54估计、偏差和方差77
541点估计77
542偏差78
543方差和标准差80
544权衡偏差和方差以小化均方误差81
545—致性82
55zi大似然估计82
551条件对数似然和均方误差84
552大似然的性质84
56贝叶斯统计85
561大后验(MAP)估计87
57监督学习算法88
571概率监督学习88
572支持向量机88
573其他简单的监督学习算法90
58无监督学习算法91
581主成分分析92
582k-均值聚类94
59随机梯度下降94
510构建机器学习算法96
511促使深度学习发展的挑战96
5111维数灾难97
5112局部不变性和平滑正则化97
5113流形学习99
第2部分深度网络:现代实践
第6章深度前馈网络105
61实例:学习XOR107
62基于梯度的学习110
621代价函数111
622输出单元113
63隐藏单元119
631整流线性单元及其扩展120
632logisticsigmoid与双曲正切函数121
633其他隐藏单元122
64架构设计123
641wan能近似性质和深度123
642其他架构上的考虑126
65反向传播和其他的微分算法126
651计算图127
652微积分中的链式法则128
653递归地使用链式法则来实现反向传播128
654全连接MLP中的反向传播计算131
655符号到符号的导数131
656—般化的反向传播133
657实例:用于MLP训练的反向传播135
658复杂化137
659深度学习界以外的微分137
6510高阶微分138
66历史小记139
第7章深度学习中的正则化141
71参数范数惩罚142
711L2参数正则化142
712L1正则化144
72作为约束的范数惩罚146
73正则化和欠约束问题147
74数据集增强148
75噪声鲁棒性149
751向输出目标注入噪声150
76半监督学习150
77多任务学习150
78提前终止151
79参数绑定和参数共享156
791卷积神经网络156
710稀疏表示157
711Bagging和其他集成方法158
712Dropout159
713对抗训练165
714切面距离、正切传播和流形正切分类器167
第8章深度模型中的优化169
81学习和纯优化有什么不同169
811经验风险
小化169
812代理损失函数和提前终止170
813批量算法和小批量算法170
82神经网络优化中的挑战173
821病态173
822局部极小值174
823高原、鞍点和其他平坦区域175
824悬崖和梯度爆炸177
825长期依赖177
826非精确梯度178
827局部和全局结构间的弱对应178
828优化的理论限制179
83基本算法180
831随机梯度下降180
832动量181
833Nesterov动量183
84参数初始化策略184
85自适应学习率算法187
851AdaGrad187
852RMSProp188
853Adam189
854选择正确的优化算法190
86二阶近似方法190
861牛顿法190
862共轭梯度191
863BFGS193
87优化策略和元算法194
871批标准化194
872坐标下降196
873Polyak平均197
874监督预训练197
875设计有助于优化的模型199
876延拓法和课程学习199
第9章卷积网络201
91卷积运算201
92动机203
93池化207
94卷积与池化作为—种无限强的先验210
95基本卷积函数的变体211
96结构化输出218
97数据类型219
98高效的卷积算法220
99随机或无监督的特征220
910卷积网络的神经科学基础221
911卷积网络与深度学习的历史226
第10章序列建模:循环和递归网络227
101展开计算图228
102循环神经网络230
1021导师驱动过程和输出循环网络232
1022计算循环神经网络的梯度233
1023作为有向图模型的循环网络235
1024基于上下文的RNN序列建模237
103双向RNN239
104基于编码-解码的序列到序列架构240
105深度循环网络242
106递归神经网络243
107长期依赖的挑战244
108回声状态网络245
109渗漏单元和其他多时间尺度的策略247
1091时间维度的跳跃连接247
1092渗漏单元和—系列不同时间尺度247
1093删除连接248
1010长短期记忆和其他门控RNN248
10101LSTM248
10102其他门控RNN250
1011优化长期依赖251
10111截断梯度251
10112引导信息流的正则化252
1012外显记忆253
第11章实践方法论256
111性能度量256
112默认的基准模型258
113决定是否收集更多数据259
114选择超参数259
1141手动调整超参数259
1142自动超参数优化算法262
1143网格搜索262
1144随机搜索263
1145基于模型的超参数优化264
115调试策略264
116示例:多位数字识别267
第12章应用269
121大规模深度学习269
1211快速的CPU实现269
1212GPU实现269
1213大规模的分布式实现271
1214模型压缩271
1215动态结构272
1216深度网络的专用硬件实现273
122计算机视觉274
1221预处理275
1222数据集增强277
123语音识别278
124自然语言处理279
1241n-gram280
1242神经语言模型281
1243高维输出282
1244结合n-gram和神经语言模型286
1245神经机器翻译287
1246历史展望289
125其他应用290
1251推荐系统290
1252知识表示、推理和回答292
第3部分深度学习研究
第13章线性因子模型297
131概率PCA和因子分析297
132独立成分分析298
133慢特征分析300
134稀疏编码301
135PCA的流形解释304
第14章自编码器306
141欠完备自编码器306
142正则自编码器307
1421稀疏自编码器307
1422去噪自编码器309
1423惩罚导数作为正则309
143表示能力、层的大小和深度310
144随机编码器和解码器310
145去噪自编码器详解311
1451得分估计312
1452历史展望314
146使用自编码器学习流形314
147收缩自编码器317
148预测稀疏分解319
149自编码器的应用319
第15章表示学习321
151贪心逐层无监督预训练322
1511何时以及为何无监督预训练有效有效323
152迁移学习和领域自适应326
153半监督解释因果关系329
154分布式表示332
155得益于深度的指数增益336
156提供发现潜在原因的线索337
第16章深度学习中的结构化概率模型339
161非结构化建模的挑战339
162使用图描述模型结构342
1621有向模型342
1622无向模型344
1623配分函数345
1624基于能量的模型346
1625分离和d-分离347
1626在有向模型和无向模型中转换350
1627因子图352
163从图模型中采样353
164结构化建模的优势353
165学习依赖关系354
166推断和近似推断354
167结构化概率模型的深度学习方法355
1671实例:受限玻尔兹曼机356
第17章蒙特卡罗方法359
171采样和蒙特卡罗方法359
1711为什么需要采样359
1712蒙特卡罗采样的基础359
172重要采样360
173马尔可夫链蒙特卡罗方法362
174Gibbs采样365
175不同的峰值之间的混合挑战365
1751不同峰值之间通过回火来混合367
1752深度也许会有助于混合368
第18章直面配分函数369
181对数似然梯度369
182随机zi大似然和对比散度370
183伪似然375
184得分匹配和比率匹配376
185去噪得分匹配378
186噪声对比估计378
187估计配分函数380
1871退火重要采样382
1872桥式采样384
第19章近似推断385
191把推断视作优化问题385
192期望z大化386
193大后验推断和稀疏编码387
194变分推断和变分学习389
1941离散型潜变量390
1942变分法394
1943连续型潜变量396
1944学习和推断之间的相互作用397
195学成近似推断397
1951醒眠算法398
1952学成推断的其他形式398
第20章深度生成模型399
201玻尔兹曼机399
202受限玻尔兹曼机400
2021条件分布401
2022训练受限玻尔兹曼机402
203深度信念网络402
204深度玻尔兹曼机404
2041有趣的性质406
2042DBM均匀场推断406
2043DBM的参数学习408
2044逐层预训练408
2045联合训练深度玻尔兹曼机410
205实值数据上的玻尔兹曼机413
2051Gaussian-BernoulliRBM413
2052条件协方差的无向模型414
206卷积玻尔兹曼机417
207用于结构化或序列输出的玻尔兹曼机418
208其他玻尔兹曼机419
209通过随机操作的反向传播419
2091通过离散随机操作的反向传播420
2010有向生成网络422
20101sigmoid信念网络422
20102可微生成器网络423
20103变分自编码器425
20104生成式对抗网络427
20105生成矩匹配网络429
20106卷积生成网络430
20107自回归网络430
20108线性自回归网络430
20109神经自回归网络431
201010NADE432
2011从自编码器采样433
20111与任意去噪自编码器相关的马尔可夫链434
20112夹合与条件采样434
20113回退训练过程435
2012生成随机网络435
20121判别性GSN436
2013其他生成方案436
2014评估生成模型437
2015结论438
参考文献439
索引486
作为一名在机器学习领域摸爬滚打了几年的“老油条”,我一直渴望找到一本能够系统性地梳理深度学习原理,并能深入讲解前沿技术(尤其是深度强化学习)的书籍。当这本《深度学习》中文版出现在我眼前时,我简直欣喜若狂。这本书的内容深度和广度都远超我的预期。它不仅仅是一本介绍算法的书,更像是一本“思想的启蒙”之作。作者在讲解深度学习的数学原理时,并没有回避复杂的公式,而是以一种严谨又不失逻辑的方式,层层递进地揭示了梯度下降、反向传播等核心概念的本质。让我印象深刻的是,书中对不同损失函数、激活函数的优缺点分析,以及如何根据具体任务选择合适的模型,这些细节的探讨,直接点亮了我过去在实践中遇到的许多困惑。而当它进入深度强化学习的部分时,更是让我眼前一亮。从Q-learning到DQN,再到DDPG和A3C等更高级的算法,作者都进行了深入浅出的讲解,并提供了详细的算法流程和伪代码,这对于我这种喜欢动手实践的人来说,简直是福音。我甚至可以想象,这本书将成为我未来研究和开发工作中的重要参考资料。
评分拿到这本书的时候,我原本是抱着一种“姑且一试”的心态。毕竟,“深度学习”这个词听起来就很高大上,我担心自己难以消化。然而,这本书带给我的惊喜是持续不断的。它以一种非常循序渐进的方式,从最基础的概念讲起,比如什么是神经网络,什么是权重,什么是偏置,什么是激活函数。作者用非常生活化的例子,比如识别猫狗,来解释这些概念,让我一下子就抓住了重点。接着,它开始讲解如何训练一个模型,如何调整参数,如何避免过拟合。这些内容对于我这样一个对编程和数学基础相对薄弱的读者来说,简直是“雪中送炭”。我最喜欢的是书中对“调参”的讲解,它不是简单地罗列参数,而是深入分析了每个参数的作用,以及它们之间如何相互影响,并给出了很多实用的建议,这让我感觉我终于掌握了训练模型的“秘诀”。而且,书中还提供了一些代码示例,虽然我还没有完全动手去跑,但光是看着代码,就能让我对理论知识有更深的理解。这本书真的让我觉得,人工智能并没有想象中那么遥不可及。
评分这本书简直就是一本通往人工智能世界的“藏宝图”!当我在书店里看到它厚实精美的封面时,就被深深吸引了。我一直对人工智能充满好奇,但又常常被那些艰深的理论和复杂的公式吓退。然而,这本书从一开始就以一种非常友好的姿态向我走来。它没有直接扔给我一堆数学概念,而是从一个宏大的视角,带我回顾了人工智能发展的历史,让我对这个领域有了更全面的认识。接着,它巧妙地引入了深度学习的核心思想,用生动形象的比喻和通俗易懂的语言,解释了神经网络是如何工作的,以及它为什么能如此强大。我尤其喜欢书中对不同网络架构的介绍,从经典的CNN到RNN,再到后来更先进的Transformer,作者都用图文并茂的方式进行了讲解,让我这个初学者也能轻松理解它们之间的区别和适用场景。而且,它还不仅仅停留在理论层面,书中穿插了大量的实际案例,让我看到了深度学习在图像识别、自然语言处理等领域的惊人应用,这极大地激发了我进一步学习的兴趣。这本书的中文翻译也非常到位,语言流畅自然,阅读起来毫无障碍,让我感觉就像在和一个经验丰富的老师在交流一样。
评分作为一名在互联网行业多年的从业者,我一直关注着人工智能的最新发展。这本《深度学习》中文版,可以说是为我打开了一扇新的大门。这本书的视角非常宏观,它不仅仅局限于技术的细节,而是从更广阔的层面,探讨了人工智能的本质,以及它对社会可能带来的影响。作者对深度学习的起源、发展和未来趋势的分析,让我对这个领域有了更深刻的认识。在技术层面,这本书对于深度神经网络的讲解,非常透彻。它详细地介绍了各种网络结构,如卷积神经网络(CNN)在图像处理中的应用,循环神经网络(RNN)在序列数据处理中的优势,以及Transformer模型如何颠覆了自然语言处理领域。我特别喜欢书中对注意力机制(Attention Mechanism)的讲解,这让我理解了为什么现代的NLP模型能够如此出色。而且,书中对模型评估和优化的讨论,也让我受益匪浅。我看到了很多在实践中会遇到的问题,比如数据偏差、模型可解释性等,作者都给出了深入的分析和解决方案。这本书绝对是一本能够提升认知、指导实践的优秀著作。
评分我一直对人工智能中的“决策”过程非常着迷,尤其是那种能够自主学习、不断优化的智能体,比如在围棋、游戏中表现出惊人能力的AI。因此,当我在书架上看到这本《深度学习》中文版,并且其中有“深度强化学习”这个部分时,我毫不犹豫地选择了它。这本书的内容结构安排得非常合理,前面部分对深度学习的基础知识做了扎实的铺垫,为后面的强化学习内容打下了坚实的基础。作者在讲解强化学习时,并没有采用过于枯燥的理论推导,而是通过游戏、机器人控制等生动的例子,让我能够直观地理解“状态”、“动作”、“奖励”这些核心概念。让我印象深刻的是,书中对“探索”与“利用”之间权衡的讨论,这让我明白了为什么一个好的强化学习算法需要在尝试新事物和利用已知信息之间找到平衡。而且,书中对深度Q网络(DQN)的讲解,以及如何将其应用于实际问题,让我看到了将深度学习与强化学习结合的巨大潜力。我甚至已经开始思考,如何将书中介绍的一些算法应用到我自己的项目中,去解决一些现实世界中的复杂决策问题。
评分送货超级快,太好了
评分包装不错
评分书质量不错,时效性还可以。
评分书的质量很好,正版,只要学到了知识,就值得买
评分印刷很好,快的送货的速度还可以啊,推荐这本书。
评分读了才知道是好书
评分好
评分神书慢慢膜拜
评分不错的书,很厚啊,对我很有用
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.coffeedeals.club All Rights Reserved. 静流书站 版权所有