編輯推薦
《人工智能:復雜問題求解的結構和策略(英文版)(第6版)》是一本經典的人工智能教材,全麵闡述瞭人工智能的基礎理論,有效結閤瞭求解智能問題的數據結構以及實現的算法,把人工智能的應用程序應用於實際環境中,並從社會和哲學、心理學以及神經生理學角度對人工智能進行瞭獨特的討論。《人工智能:復雜問題求解的結構和策略(英文版)(第6版)》新增內容新增一章,介紹用於機器學習的隨機方法,包括一階貝葉斯網絡、各種隱馬爾可夫模型,馬爾可夫隨機域推理和循環信念傳播。
介紹針對期望大化學習以及利用馬爾可夫鏈濛特卡羅采
內容簡介
《人工智能:復雜問題求解的結構和策略(英文版)(第6版)》英文影印版由PearsonEducationAsiaLtd授權機械工業齣版社少數齣版。未經齣版者書麵許可,不得以任何方式復製或抄襲《人工智能:復雜問題求解的結構和策略(英文版)(第6版)》內容。
僅限於中華人民共和國境內(不包括中國香港、澳門特彆行政區和中國颱灣地區)銷售發行。
《人工智能:復雜問題求解的結構和策略(英文版)(第6版)》封麵貼有PearsonEducation(培生教育齣版集團)激光防僞標簽,無標簽者不得銷售。
作者簡介
George F.Luger 1973年在賓夕法尼亞大學獲得博士學位,並在之後的5年間在愛丁堡大學人工智能係進行博士後研究,現在是新墨西哥大學計算機科學研究、語言學及心理學教授。
內頁插圖
精彩書評
“在該領域裏學生經常遇到許羅很難的概念,通過深刻的實例與簡單明瞭的祝圈,該書清晰而準確塏闞述瞭這些概念。”
——Toseph Lewis,聖迭戈州立大學
“本書是人工智能課程的完美補充。它既給讀者以曆史的現點,又給幽所有莰術的賓用指南。這是一本必須要推薦的人工智能的田書。”
——-Pascal Rebreyend,瑞典達拉那大學
“該書的寫作風格和全麵的論述使它成為人工智能領域很有價值的文獻。”
——Malachy Eat
目錄
Preface
Publishers Acknowledgements
PART Ⅰ ARTIFIClAL INTELLIGENCE:ITS ROOTS AND SCOPE
1 A1:HISTORY AND APPLICATIONS
1.1 From Eden to ENIAC:Attitudes toward Intelligence,Knowledge,andHuman Artifice
1.2 0verview ofAl Application Areas
1.3 Artificial Intelligence A Summary
1.4 Epilogue and References
1.5 Exercises
PART Ⅱ ARTIFlClAL INTELLIGENCE AS REPRESENTATION AN D SEARCH
2 THE PREDICATE CALCULUS
2.0 Intr0血ction
2.1 The Propositional Calculus
2.2 The Predicate Calculus
2.3 Using Inference Rules to Produce Predicate Calculus Expressions
2.4 Application:A Logic-Based Financial Advisor
2.5 Epilogue and References
2.6 Exercises
3 STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH
3.0 Introducfion
3.1 GraphTheory
3.2 Strategies for State Space Search
3.3 using the state Space to Represent Reasoning with the Predicate Calculus
3.4 Epilogue and References
3.5 Exercises
4 HEURISTIC SEARCH
4.0 Introduction
4.l Hill Climbing and Dynamic Programmin9
4.2 The Best-First Search Algorithm
4.3 Admissibility,Monotonicity,and Informedness
4.4 Using Heuristics in Games
4.5 Complexity Issues
4.6 Epilogue and References
4.7 Exercises
5 STOCHASTIC METHODS
5.0 Introduction
5.1 The Elements ofCountin9
5.2 Elements ofProbabilityTheory
5.3 Applications ofthe Stochastic Methodology
5.4 BayesTheorem
5.5 Epilogue and References
5.6 Exercises
6 coNTROL AND IMPLEMENTATION OF STATE SPACE SEARCH
6.0 Introduction l93
6.1 Recursion.Based Search
6.2 Production Systems
6.3 The Blackboard Architecture for Problem Solvin9
6.4 Epilogue and References
6.5 Exercises
PARTⅢ CAPTURING INTELLIGENCE:THE AI CHALLENGE
7 KNOWLEDGE REPRESENTATION
7.0 Issues in Knowledge Representation
7.1 A BriefHistory ofAI Representational Systems
7.2 Conceptual Graphs:A Network Language
7.3 Alternative Representations and Ontologies
7.4 Agent Based and Distributed Problem Solving
7.5 Epilogue and References
7.6 Exercises
8 STRONG METHOD PROBLEM SOLVING
8.0 Introduction
8.1 Overview ofExpert Sygem Technology
8.2 Rule.Based Expert Sygems
8.3 Model-Based,Case Based and Hybrid Systems
8.4 Planning
8.5 Epilogue and References
8.6 Exercises
9 REASONING IN UNCERTAIN STUATIONS
9.0 Introduction
9.1 Logic-Based Abductive Inference
9.2 Abduction:Alternatives to Logic
9.3 The Stochastic Approach to Uncertainty
9.4 Epilogue and References
9.5 Exercises
PART Ⅳ
MACHINE LEARNING
10 MACHINE LEARNING:SYMBOL-BASED
10.0 Introduction
10.1 A Framework for Symbol based Learning
10.2 version Space Search
10.3 The ID3 Decision Tree Induction Algorithm
10.4 Inductive Bias and Learnability
10.5 Knowledge and Learning
10.6 Unsupervised Learning
10.7 Reinforcement Learning
10.8 Epilogue and Referenees
10.9 Exercises
11 MACHINE LEARNING:CONNECTIONtST
11.0 Introduction
11.1 Foundations for Connectionist Networks
11.2 Perceptron Learning
11.3 Backpropagation Learning
11.4 Competitive Learning
11.5 Hebbian Coincidence Learning
11.6 Attractor Networks or“Memories”
11.7 Epilogue and References
11.8 Exercises 506
12 MACHINE LEARNING:GENETIC AND EMERGENT
12.0 Genetic and Emergent MedeIs ofLearning
12.1 11Ic Genetic Algorithm
12.2 Classifier Systems and Genetic Programming
12.3 Artmcial Life and Society-Based Learning
12.4 EpilogueandReferences
12.5 Exercises
13 MACHINE LEARNING:PROBABILISTIC
13.0 Stochastic andDynamicModelsofLearning
13.1 Hidden Markov Models(HMMs)
13.2 DynamicBayesianNetworksandLearning
13.3 Stochastic Extensions to Reinforcement Learning
13.4 EpilogueandReferences
13.5 Exercises
PART Ⅴ
AD,ANCED TOPlCS FOR Al PROBLEM SOLVING
14 AUTOMATED REASONING
14.0 Introduction to Weak Methods inTheorem Proving
14.1 TIIeGeneralProblem SolverandDifiel"enceTables
14.2 Resolution TheOrem Proving
14.3 PROLOG and Automated Reasoning
14.4 Further Issues in Automated Reasoning
14.5 EpilogueandReferences
14.6 Exercises
15 UNDERs-rANDING NATURAL LANGUAGE
15.0 TheNaturalLang~~geUnderstandingProblem
15.1 Deconstructing Language:An Analysis
15.2 Syntax
15.3 TransitionNetworkParsers and Semantics
15.4 StochasticTools forLanguage Understanding
15.5 Natural LanguageApplications
15.6 Epilogue and References
15.7 Exercises
……
PART Ⅵ EPILOGUE
16 ARTIFICIAL INTELLIGENCE AS EMPIRICAL ENQUIRY
精彩書摘
postconditions of each action are in.the column below it. For example, row 5 lists the pre-conditions for pickup(X) and Column 6 lists the postconditions (the add and delete lists) ofpickup(X). These postconditions are placed in the row of the action that uses them as pre-conditions, organizing them in a manner relevant to further actions. The triangle tablespurpose is to properly interleave the preconditions and postconditions of each of thesmaller actions that make up the larger goal. Thus, triangle tables address non-linearityissues in planning on the macro operator level; Partial-Order Planners (Russell and Norvig1995) and other approaches have further addressed these issues.
One advantage of triangle tables is the assistance they can offer in attempting torecover from unexpected happenings, such as a block being slightly out of place, or acci-dents, such as dropping a block. Often an accident can require backing up several stepsbefore the plan can be resumed. When something goes wrong with a solution the plannercan go back into the rows and columns of the triangle table to check what is true. Once theplanner has figured out what is still true within the rows and columns, it then knows whatthe next step must be if the larger solution is to be restarted. This is formalized with thenotion of a kernel.
The nth kernel is the intersection of all rows below and including the nth row and allcolumns to the left of and including the rtth column. In Figure 8.21 we have outlined thethird kernel in bold. In carrying out a plan represented in a triangle table, the ith operation(that is, the operation in row i) may be performed only if all predicates contained in the ithkernel aretrue. This offers a straightforward way of verifying that a step can be taken andalso supports systematic recovery from any disruption of the plan. Given a triangle table,we find and execute the highest-numbered action whose kernel is enabled.
前言/序言
I was very pleased to be asked to produce the sixth edition of my artificial intelligencebook. It is a compliment to the earlier editions, started over twenty years ago, that ourapproach to AI has been so highly valued. It is also exciting that, as new development inthe field emerges, we are able to present much of it in each new edition. We thank ourmany readers, colleagues, and students for keeping our topics relevant and our presenta-tion up to date.
Many sections of the earlier editions have endured remarkably well, including thepresentation of logic, search algorithms, knowledge representation, production systems,machine learning, and, in the supplementary materials, the programming techniquesdeveloped in Lisp, Prolog, and with this edition, Java. These remain central to the practiceof artificial intelligence, and a constant in this new edition.
This book remains accessible. We introduce key representation techniques includinglogic, semantic and connectionist networks, graphical models, and many more. Our searchalgorithms are presented clearly, first in pseudocode, and then in the supplementary mate-rials, many of them are implemented in Prolog, Lisp, and/or Java. It is expected that themotivated students can take our core implementations and extend them to new excitingapplications.
We created, for the sixth edition, a new machine learning chapter based on stochasticmethods (Chapter 13). We feel that the stochastic technology is having an increasinglylarger impact on AI, especially in areas such as diagnostic and prognostic reasoning, natu-ral language analysis, robotics, and machine learning.
《人工智能:復雜問題求解的結構和策略》(第6版) 導論 在當今信息爆炸的時代,人類社會麵臨著前所未有的復雜挑戰,從氣候變化到疾病蔓延,從金融市場的波動到城市交通的擁堵,這些問題無一不展現齣其多層麵、動態性以及相互關聯的特性。傳統的研究方法和解決思路在應對這些日益增長的復雜性時顯得力不從心。正是在這樣的背景下,人工智能(AI)作為一種能夠模擬、延伸和擴展人類智能的新興領域,正以前所未有的速度和深度滲透到我們生活的方方麵麵,為理解和解決復雜問題提供瞭全新的視角和強大的工具。 人工智能的基石:構建智能係統的原理 《人工智能:復雜問題求解的結構和策略》(第6版)深入探討瞭人工智能的核心構成要素,為讀者構建瞭一個清晰、係統的認知框架。本書不僅僅是關於“做什麼”,更重要的是“如何做”,它係統地梳理瞭構建智能係統所必需的底層原理和關鍵技術。 1. 問題求解(Problem Solving)的本質: 復雜問題求解是人工智能的核心目標之一。本書深入剖析瞭問題求解的多種範式。 狀態空間搜索(State-Space Search): 這是理解許多AI問題求解算法的基礎。本書詳盡介紹瞭狀態空間的概念,包括初始狀態、目標狀態以及各種可能的動作(狀態轉移)。在此基礎上,它係統地闡述瞭各類搜索算法,從基礎的無信息搜索(如廣度優先搜索BFS、深度優先搜索DFS)到更高效的有信息搜索(如貪心最佳優先搜索Greedy Best-First Search、A搜索)。對於每種算法,本書不僅講解瞭其原理和實現方式,還深入分析瞭它們的優缺點,例如搜索效率、解的質量以及對內存的需求。通過大量的實例,讀者可以直觀地理解這些算法在實際問題中的應用,例如迷宮求解、地圖導航等。 啓發式搜索(Heuristic Search): 麵對日益增長的問題規模,盲目搜索變得不可行。本書重點介紹瞭啓發式函數的設計原則和應用,以及如何利用啓發式信息指導搜索過程,從而大幅提高搜索效率。A算法作為啓發式搜索的經典代錶,其原理、性能分析和改進方法得到詳細闡述。 約束滿足問題(Constraint Satisfaction Problems, CSPs): 許多現實世界的問題可以建模為約束滿足問題,例如調度、資源分配等。本書介紹瞭CSP的定義、變量、域和約束,並詳細講解瞭迴溯搜索(Backtracking Search)及其各種約束傳播技術(如前嚮檢查Forward Checking、弧一緻性Arc Consistency)和變量/值排序啓發式方法,這些技術能夠有效地剪枝搜索空間,加速求解過程。 局部搜索(Local Search): 對於一些難以找到精確解的問題,局部搜索算法提供瞭近似最優解的有效途徑。本書介紹瞭爬山法(Hill Climbing)、模擬退火(Simulated Annealing)、遺傳算法(Genetic Algorithms)等代錶性的局部搜索算法,並分析瞭它們在不同問題上的適用性和性能。 2. 知識錶示與推理(Knowledge Representation and Reasoning): 智能係統需要能夠理解和運用知識。本書詳細探討瞭多種知識錶示形式以及基於這些知識進行推理的方法。 邏輯(Logic): 邏輯是AI知識錶示和推理的基石。本書介紹瞭命題邏輯(Propositional Logic)和一階邏輯(First-Order Logic)的基本概念、語法和語義。在此基礎上,它詳細講解瞭各種推理方法,包括演繹推理(Deductive Reasoning),如模式匹配(Modus Ponens)、歸結(Resolution)等,以及歸納推理(Inductive Reasoning)和溯因推理(Abductive Reasoning)。對於邏輯推理的計算復雜性,本書也進行瞭深入的分析。 概率方法(Probabilistic Methods): 現實世界充滿不確定性,概率方法為此提供瞭強大的建模工具。本書深入介紹瞭概率論的基礎知識,並重點講解瞭貝葉斯網絡(Bayesian Networks)及其推理算法,如精確推理(Exact Inference)和近似推理(Approximate Inference)。此外,隱馬爾可夫模型(Hidden Markov Models, HMMs)作為序列數據建模的重要工具,也得到詳細闡述,並在語音識彆、自然語言處理等領域得到瞭廣泛應用。 其他知識錶示形式: 除瞭邏輯和概率方法,本書還介紹瞭本體(Ontologies)、語義網絡(Semantic Networks)和框架(Frames)等其他知識錶示方法,以及它們在構建復雜知識圖譜和專傢係統中的作用。 3. 機器學習(Machine Learning): 機器學習是賦予計算機從數據中學習能力的關鍵技術,也是現代AI發展的重要驅動力。 監督學習(Supervised Learning): 這是最常見的機器學習範式,本書詳細介紹瞭各種監督學習算法。 分類(Classification): 包括決策樹(Decision Trees)、支持嚮量機(Support Vector Machines, SVMs)、樸素貝葉斯(Naïve Bayes)以及邏輯迴歸(Logistic Regression)等。 迴歸(Regression): 綫性迴歸(Linear Regression)、多項式迴歸(Polynomial Regression)等。 集成學習(Ensemble Learning): 如隨機森林(Random Forests)和梯度提升(Gradient Boosting),它們通過組閤多個弱學習器來構建更強大的模型。 無監督學習(Unsupervised Learning): 在沒有標簽數據的情況下,無監督學習能夠發現數據中的隱藏模式。本書介紹瞭聚類(Clustering)算法,如K-Means、層次聚類(Hierarchical Clustering),以及降維(Dimensionality Reduction)技術,如主成分分析(Principal Component Analysis, PCA)和t-SNE。 強化學習(Reinforcement Learning, RL): 強化學習通過與環境的交互來學習最優策略。本書深入講解瞭馬爾可夫決策過程(Markov Decision Processes, MDPs)、Q-learning、SARSA等核心概念和算法,並探討瞭它們在遊戲AI、機器人控製等領域的應用。 深度學習(Deep Learning): 作為機器學習領域最熱門的分支之一,深度學習憑藉其強大的錶示學習能力,在圖像識彆、自然語言處理等領域取得瞭突破性進展。本書詳細介紹瞭神經網絡(Neural Networks)的基本結構,包括前饋神經網絡(Feedforward Neural Networks)、捲積神經網絡(Convolutional Neural Networks, CNNs)以及循環神經網絡(Recurrent Neural Networks, RNNs)和Transformer模型等,並闡述瞭它們在解決復雜感知和認知任務中的作用。 4. 規劃(Planning): 規劃是AI係統生成一係列行動以達到目標的過程。 經典規劃(Classical Planning): 本書介紹瞭PDDL(Planning Domain Definition Language)等規劃語言,以及STRIPS、ADL等規劃錶示方法。同時,講解瞭如Graphplan、FF(Fast Forward)等經典規劃器。 部分可觀測馬爾可夫決策過程(Partially Observable Markov Decision Processes, POMDPs): 針對信息不完全的環境,POMDPs提供瞭一種更普適的規劃框架。 麵嚮現實世界的規劃: 本書還探討瞭在不確定性、動態環境以及多智能體協作等復雜場景下的規劃技術。 5. 自然語言處理(Natural Language Processing, NLP): 理解和生成人類語言是AI的重要挑戰。 語言模型(Language Models): 從N-gram模型到基於深度學習的語言模型,本書梳理瞭語言模型的發展脈絡。 句法分析(Syntactic Parsing): 探討瞭如何分析句子的語法結構。 語義理解(Semantic Understanding): 包括詞義消歧、關係抽取等。 文本生成(Text Generation): 介紹瞭如何讓機器生成自然流暢的文本。 機器翻譯(Machine Translation): 闡述瞭統計機器翻譯和神經機器翻譯的發展。 6. 計算機視覺(Computer Vision): 讓機器“看見”並理解圖像和視頻是計算機視覺的目標。 圖像特徵提取(Image Feature Extraction): 如SIFT、SURF等經典特徵,以及CNN在特徵學習中的作用。 目標檢測與識彆(Object Detection and Recognition): 介紹瞭R-CNN係列、YOLO等主流算法。 圖像分割(Image Segmentation): 包括語義分割和實例分割。 場景理解(Scene Understanding): 結閤多種視覺技術,理解圖像的整體內容。 7. 機器人學(Robotics): 將AI的能力應用於物理世界,使機器人能夠感知、決策和行動。 運動規劃(Motion Planning): 機器人如何在復雜環境中規劃安全的路徑。 感知與理解(Perception and Understanding): 結閤計算機視覺、傳感器融閤等技術。 控製(Control): 如何設計穩定的控製器使機器人執行任務。 人機交互(Human-Robot Interaction): 如何讓機器人與人類進行自然友好的交互。 8. 哲學與倫理考量: 除瞭技術層麵,本書也關注AI發展帶來的深遠影響。 智能的本質: 探討瞭機器智能與人類智能的異同。 AI的局限性: 分析瞭當前AI技術麵臨的挑戰和尚未解決的問題。 倫理和社會影響: 討論瞭AI在就業、隱私、偏見、安全以及未來發展方嚮等方麵可能帶來的倫理和社會問題。 麵嚮復雜的未來 《人工智能:復雜問題求解的結構和策略》(第6版)以其全麵、深入的視角,係統地梳理瞭人工智能領域的最新進展和核心理論。它不僅為初學者提供瞭堅實的基礎,也為資深研究者提供瞭豐富的參考。本書將理論知識與實際應用緊密結閤,通過大量的案例分析和算法闡釋,幫助讀者掌握解決現實世界復雜問題的關鍵工具和方法。無論您是希望深入理解AI技術原理的研究人員,還是期望將AI應用於實際業務的工程師,亦或是對智能科學充滿好奇的學生,本書都將是您不可或缺的寶貴資源,助您在人工智能的廣闊天地中,開啓探索復雜問題求解的新篇章。