编辑推荐
《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》是一本经典的人工智能教材,全面阐述了人工智能的基础理论,有效结合了求解智能问题的数据结构以及实现的算法,把人工智能的应用程序应用于实际环境中,并从社会和哲学、心理学以及神经生理学角度对人工智能进行了独特的讨论。《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》新增内容新增一章,介绍用于机器学习的随机方法,包括一阶贝叶斯网络、各种隐马尔可夫模型,马尔可夫随机域推理和循环信念传播。
介绍针对期望大化学习以及利用马尔可夫链蒙特卡罗采
内容简介
《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》英文影印版由PearsonEducationAsiaLtd授权机械工业出版社少数出版。未经出版者书面许可,不得以任何方式复制或抄袭《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》内容。
仅限于中华人民共和国境内(不包括中国香港、澳门特别行政区和中国台湾地区)销售发行。
《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》封面贴有PearsonEducation(培生教育出版集团)激光防伪标签,无标签者不得销售。
作者简介
George F.Luger 1973年在宾夕法尼亚大学获得博士学位,并在之后的5年间在爱丁堡大学人工智能系进行博士后研究,现在是新墨西哥大学计算机科学研究、语言学及心理学教授。
内页插图
精彩书评
“在该领域里学生经常遇到许罗很难的概念,通过深刻的实例与简单明了的祝圈,该书清晰而准确垲阚述了这些概念。”
——Toseph Lewis,圣迭戈州立大学
“本书是人工智能课程的完美补充。它既给读者以历史的现点,又给幽所有莰术的宾用指南。这是一本必须要推荐的人工智能的田书。”
——-Pascal Rebreyend,瑞典达拉那大学
“该书的写作风格和全面的论述使它成为人工智能领域很有价值的文献。”
——Malachy Eat
目录
Preface
Publishers Acknowledgements
PART Ⅰ ARTIFIClAL INTELLIGENCE:ITS ROOTS AND SCOPE
1 A1:HISTORY AND APPLICATIONS
1.1 From Eden to ENIAC:Attitudes toward Intelligence,Knowledge,andHuman Artifice
1.2 0verview ofAl Application Areas
1.3 Artificial Intelligence A Summary
1.4 Epilogue and References
1.5 Exercises
PART Ⅱ ARTIFlClAL INTELLIGENCE AS REPRESENTATION AN D SEARCH
2 THE PREDICATE CALCULUS
2.0 Intr0血ction
2.1 The Propositional Calculus
2.2 The Predicate Calculus
2.3 Using Inference Rules to Produce Predicate Calculus Expressions
2.4 Application:A Logic-Based Financial Advisor
2.5 Epilogue and References
2.6 Exercises
3 STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH
3.0 Introducfion
3.1 GraphTheory
3.2 Strategies for State Space Search
3.3 using the state Space to Represent Reasoning with the Predicate Calculus
3.4 Epilogue and References
3.5 Exercises
4 HEURISTIC SEARCH
4.0 Introduction
4.l Hill Climbing and Dynamic Programmin9
4.2 The Best-First Search Algorithm
4.3 Admissibility,Monotonicity,and Informedness
4.4 Using Heuristics in Games
4.5 Complexity Issues
4.6 Epilogue and References
4.7 Exercises
5 STOCHASTIC METHODS
5.0 Introduction
5.1 The Elements ofCountin9
5.2 Elements ofProbabilityTheory
5.3 Applications ofthe Stochastic Methodology
5.4 BayesTheorem
5.5 Epilogue and References
5.6 Exercises
6 coNTROL AND IMPLEMENTATION OF STATE SPACE SEARCH
6.0 Introduction l93
6.1 Recursion.Based Search
6.2 Production Systems
6.3 The Blackboard Architecture for Problem Solvin9
6.4 Epilogue and References
6.5 Exercises
PARTⅢ CAPTURING INTELLIGENCE:THE AI CHALLENGE
7 KNOWLEDGE REPRESENTATION
7.0 Issues in Knowledge Representation
7.1 A BriefHistory ofAI Representational Systems
7.2 Conceptual Graphs:A Network Language
7.3 Alternative Representations and Ontologies
7.4 Agent Based and Distributed Problem Solving
7.5 Epilogue and References
7.6 Exercises
8 STRONG METHOD PROBLEM SOLVING
8.0 Introduction
8.1 Overview ofExpert Sygem Technology
8.2 Rule.Based Expert Sygems
8.3 Model-Based,Case Based and Hybrid Systems
8.4 Planning
8.5 Epilogue and References
8.6 Exercises
9 REASONING IN UNCERTAIN STUATIONS
9.0 Introduction
9.1 Logic-Based Abductive Inference
9.2 Abduction:Alternatives to Logic
9.3 The Stochastic Approach to Uncertainty
9.4 Epilogue and References
9.5 Exercises
PART Ⅳ
MACHINE LEARNING
10 MACHINE LEARNING:SYMBOL-BASED
10.0 Introduction
10.1 A Framework for Symbol based Learning
10.2 version Space Search
10.3 The ID3 Decision Tree Induction Algorithm
10.4 Inductive Bias and Learnability
10.5 Knowledge and Learning
10.6 Unsupervised Learning
10.7 Reinforcement Learning
10.8 Epilogue and Referenees
10.9 Exercises
11 MACHINE LEARNING:CONNECTIONtST
11.0 Introduction
11.1 Foundations for Connectionist Networks
11.2 Perceptron Learning
11.3 Backpropagation Learning
11.4 Competitive Learning
11.5 Hebbian Coincidence Learning
11.6 Attractor Networks or“Memories”
11.7 Epilogue and References
11.8 Exercises 506
12 MACHINE LEARNING:GENETIC AND EMERGENT
12.0 Genetic and Emergent MedeIs ofLearning
12.1 11Ic Genetic Algorithm
12.2 Classifier Systems and Genetic Programming
12.3 Artmcial Life and Society-Based Learning
12.4 EpilogueandReferences
12.5 Exercises
13 MACHINE LEARNING:PROBABILISTIC
13.0 Stochastic andDynamicModelsofLearning
13.1 Hidden Markov Models(HMMs)
13.2 DynamicBayesianNetworksandLearning
13.3 Stochastic Extensions to Reinforcement Learning
13.4 EpilogueandReferences
13.5 Exercises
PART Ⅴ
AD,ANCED TOPlCS FOR Al PROBLEM SOLVING
14 AUTOMATED REASONING
14.0 Introduction to Weak Methods inTheorem Proving
14.1 TIIeGeneralProblem SolverandDifiel"enceTables
14.2 Resolution TheOrem Proving
14.3 PROLOG and Automated Reasoning
14.4 Further Issues in Automated Reasoning
14.5 EpilogueandReferences
14.6 Exercises
15 UNDERs-rANDING NATURAL LANGUAGE
15.0 TheNaturalLang~~geUnderstandingProblem
15.1 Deconstructing Language:An Analysis
15.2 Syntax
15.3 TransitionNetworkParsers and Semantics
15.4 StochasticTools forLanguage Understanding
15.5 Natural LanguageApplications
15.6 Epilogue and References
15.7 Exercises
……
PART Ⅵ EPILOGUE
16 ARTIFICIAL INTELLIGENCE AS EMPIRICAL ENQUIRY
精彩书摘
postconditions of each action are in.the column below it. For example, row 5 lists the pre-conditions for pickup(X) and Column 6 lists the postconditions (the add and delete lists) ofpickup(X). These postconditions are placed in the row of the action that uses them as pre-conditions, organizing them in a manner relevant to further actions. The triangle tablespurpose is to properly interleave the preconditions and postconditions of each of thesmaller actions that make up the larger goal. Thus, triangle tables address non-linearityissues in planning on the macro operator level; Partial-Order Planners (Russell and Norvig1995) and other approaches have further addressed these issues.
One advantage of triangle tables is the assistance they can offer in attempting torecover from unexpected happenings, such as a block being slightly out of place, or acci-dents, such as dropping a block. Often an accident can require backing up several stepsbefore the plan can be resumed. When something goes wrong with a solution the plannercan go back into the rows and columns of the triangle table to check what is true. Once theplanner has figured out what is still true within the rows and columns, it then knows whatthe next step must be if the larger solution is to be restarted. This is formalized with thenotion of a kernel.
The nth kernel is the intersection of all rows below and including the nth row and allcolumns to the left of and including the rtth column. In Figure 8.21 we have outlined thethird kernel in bold. In carrying out a plan represented in a triangle table, the ith operation(that is, the operation in row i) may be performed only if all predicates contained in the ithkernel aretrue. This offers a straightforward way of verifying that a step can be taken andalso supports systematic recovery from any disruption of the plan. Given a triangle table,we find and execute the highest-numbered action whose kernel is enabled.
前言/序言
I was very pleased to be asked to produce the sixth edition of my artificial intelligencebook. It is a compliment to the earlier editions, started over twenty years ago, that ourapproach to AI has been so highly valued. It is also exciting that, as new development inthe field emerges, we are able to present much of it in each new edition. We thank ourmany readers, colleagues, and students for keeping our topics relevant and our presenta-tion up to date.
Many sections of the earlier editions have endured remarkably well, including thepresentation of logic, search algorithms, knowledge representation, production systems,machine learning, and, in the supplementary materials, the programming techniquesdeveloped in Lisp, Prolog, and with this edition, Java. These remain central to the practiceof artificial intelligence, and a constant in this new edition.
This book remains accessible. We introduce key representation techniques includinglogic, semantic and connectionist networks, graphical models, and many more. Our searchalgorithms are presented clearly, first in pseudocode, and then in the supplementary mate-rials, many of them are implemented in Prolog, Lisp, and/or Java. It is expected that themotivated students can take our core implementations and extend them to new excitingapplications.
We created, for the sixth edition, a new machine learning chapter based on stochasticmethods (Chapter 13). We feel that the stochastic technology is having an increasinglylarger impact on AI, especially in areas such as diagnostic and prognostic reasoning, natu-ral language analysis, robotics, and machine learning.
《人工智能:复杂问题求解的结构和策略》(第6版) 导论 在当今信息爆炸的时代,人类社会面临着前所未有的复杂挑战,从气候变化到疾病蔓延,从金融市场的波动到城市交通的拥堵,这些问题无一不展现出其多层面、动态性以及相互关联的特性。传统的研究方法和解决思路在应对这些日益增长的复杂性时显得力不从心。正是在这样的背景下,人工智能(AI)作为一种能够模拟、延伸和扩展人类智能的新兴领域,正以前所未有的速度和深度渗透到我们生活的方方面面,为理解和解决复杂问题提供了全新的视角和强大的工具。 人工智能的基石:构建智能系统的原理 《人工智能:复杂问题求解的结构和策略》(第6版)深入探讨了人工智能的核心构成要素,为读者构建了一个清晰、系统的认知框架。本书不仅仅是关于“做什么”,更重要的是“如何做”,它系统地梳理了构建智能系统所必需的底层原理和关键技术。 1. 问题求解(Problem Solving)的本质: 复杂问题求解是人工智能的核心目标之一。本书深入剖析了问题求解的多种范式。 状态空间搜索(State-Space Search): 这是理解许多AI问题求解算法的基础。本书详尽介绍了状态空间的概念,包括初始状态、目标状态以及各种可能的动作(状态转移)。在此基础上,它系统地阐述了各类搜索算法,从基础的无信息搜索(如广度优先搜索BFS、深度优先搜索DFS)到更高效的有信息搜索(如贪心最佳优先搜索Greedy Best-First Search、A搜索)。对于每种算法,本书不仅讲解了其原理和实现方式,还深入分析了它们的优缺点,例如搜索效率、解的质量以及对内存的需求。通过大量的实例,读者可以直观地理解这些算法在实际问题中的应用,例如迷宫求解、地图导航等。 启发式搜索(Heuristic Search): 面对日益增长的问题规模,盲目搜索变得不可行。本书重点介绍了启发式函数的设计原则和应用,以及如何利用启发式信息指导搜索过程,从而大幅提高搜索效率。A算法作为启发式搜索的经典代表,其原理、性能分析和改进方法得到详细阐述。 约束满足问题(Constraint Satisfaction Problems, CSPs): 许多现实世界的问题可以建模为约束满足问题,例如调度、资源分配等。本书介绍了CSP的定义、变量、域和约束,并详细讲解了回溯搜索(Backtracking Search)及其各种约束传播技术(如前向检查Forward Checking、弧一致性Arc Consistency)和变量/值排序启发式方法,这些技术能够有效地剪枝搜索空间,加速求解过程。 局部搜索(Local Search): 对于一些难以找到精确解的问题,局部搜索算法提供了近似最优解的有效途径。本书介绍了爬山法(Hill Climbing)、模拟退火(Simulated Annealing)、遗传算法(Genetic Algorithms)等代表性的局部搜索算法,并分析了它们在不同问题上的适用性和性能。 2. 知识表示与推理(Knowledge Representation and Reasoning): 智能系统需要能够理解和运用知识。本书详细探讨了多种知识表示形式以及基于这些知识进行推理的方法。 逻辑(Logic): 逻辑是AI知识表示和推理的基石。本书介绍了命题逻辑(Propositional Logic)和一阶逻辑(First-Order Logic)的基本概念、语法和语义。在此基础上,它详细讲解了各种推理方法,包括演绎推理(Deductive Reasoning),如模式匹配(Modus Ponens)、归结(Resolution)等,以及归纳推理(Inductive Reasoning)和溯因推理(Abductive Reasoning)。对于逻辑推理的计算复杂性,本书也进行了深入的分析。 概率方法(Probabilistic Methods): 现实世界充满不确定性,概率方法为此提供了强大的建模工具。本书深入介绍了概率论的基础知识,并重点讲解了贝叶斯网络(Bayesian Networks)及其推理算法,如精确推理(Exact Inference)和近似推理(Approximate Inference)。此外,隐马尔可夫模型(Hidden Markov Models, HMMs)作为序列数据建模的重要工具,也得到详细阐述,并在语音识别、自然语言处理等领域得到了广泛应用。 其他知识表示形式: 除了逻辑和概率方法,本书还介绍了本体(Ontologies)、语义网络(Semantic Networks)和框架(Frames)等其他知识表示方法,以及它们在构建复杂知识图谱和专家系统中的作用。 3. 机器学习(Machine Learning): 机器学习是赋予计算机从数据中学习能力的关键技术,也是现代AI发展的重要驱动力。 监督学习(Supervised Learning): 这是最常见的机器学习范式,本书详细介绍了各种监督学习算法。 分类(Classification): 包括决策树(Decision Trees)、支持向量机(Support Vector Machines, SVMs)、朴素贝叶斯(Naïve Bayes)以及逻辑回归(Logistic Regression)等。 回归(Regression): 线性回归(Linear Regression)、多项式回归(Polynomial Regression)等。 集成学习(Ensemble Learning): 如随机森林(Random Forests)和梯度提升(Gradient Boosting),它们通过组合多个弱学习器来构建更强大的模型。 无监督学习(Unsupervised Learning): 在没有标签数据的情况下,无监督学习能够发现数据中的隐藏模式。本书介绍了聚类(Clustering)算法,如K-Means、层次聚类(Hierarchical Clustering),以及降维(Dimensionality Reduction)技术,如主成分分析(Principal Component Analysis, PCA)和t-SNE。 强化学习(Reinforcement Learning, RL): 强化学习通过与环境的交互来学习最优策略。本书深入讲解了马尔可夫决策过程(Markov Decision Processes, MDPs)、Q-learning、SARSA等核心概念和算法,并探讨了它们在游戏AI、机器人控制等领域的应用。 深度学习(Deep Learning): 作为机器学习领域最热门的分支之一,深度学习凭借其强大的表示学习能力,在图像识别、自然语言处理等领域取得了突破性进展。本书详细介绍了神经网络(Neural Networks)的基本结构,包括前馈神经网络(Feedforward Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)以及循环神经网络(Recurrent Neural Networks, RNNs)和Transformer模型等,并阐述了它们在解决复杂感知和认知任务中的作用。 4. 规划(Planning): 规划是AI系统生成一系列行动以达到目标的过程。 经典规划(Classical Planning): 本书介绍了PDDL(Planning Domain Definition Language)等规划语言,以及STRIPS、ADL等规划表示方法。同时,讲解了如Graphplan、FF(Fast Forward)等经典规划器。 部分可观测马尔可夫决策过程(Partially Observable Markov Decision Processes, POMDPs): 针对信息不完全的环境,POMDPs提供了一种更普适的规划框架。 面向现实世界的规划: 本书还探讨了在不确定性、动态环境以及多智能体协作等复杂场景下的规划技术。 5. 自然语言处理(Natural Language Processing, NLP): 理解和生成人类语言是AI的重要挑战。 语言模型(Language Models): 从N-gram模型到基于深度学习的语言模型,本书梳理了语言模型的发展脉络。 句法分析(Syntactic Parsing): 探讨了如何分析句子的语法结构。 语义理解(Semantic Understanding): 包括词义消歧、关系抽取等。 文本生成(Text Generation): 介绍了如何让机器生成自然流畅的文本。 机器翻译(Machine Translation): 阐述了统计机器翻译和神经机器翻译的发展。 6. 计算机视觉(Computer Vision): 让机器“看见”并理解图像和视频是计算机视觉的目标。 图像特征提取(Image Feature Extraction): 如SIFT、SURF等经典特征,以及CNN在特征学习中的作用。 目标检测与识别(Object Detection and Recognition): 介绍了R-CNN系列、YOLO等主流算法。 图像分割(Image Segmentation): 包括语义分割和实例分割。 场景理解(Scene Understanding): 结合多种视觉技术,理解图像的整体内容。 7. 机器人学(Robotics): 将AI的能力应用于物理世界,使机器人能够感知、决策和行动。 运动规划(Motion Planning): 机器人如何在复杂环境中规划安全的路径。 感知与理解(Perception and Understanding): 结合计算机视觉、传感器融合等技术。 控制(Control): 如何设计稳定的控制器使机器人执行任务。 人机交互(Human-Robot Interaction): 如何让机器人与人类进行自然友好的交互。 8. 哲学与伦理考量: 除了技术层面,本书也关注AI发展带来的深远影响。 智能的本质: 探讨了机器智能与人类智能的异同。 AI的局限性: 分析了当前AI技术面临的挑战和尚未解决的问题。 伦理和社会影响: 讨论了AI在就业、隐私、偏见、安全以及未来发展方向等方面可能带来的伦理和社会问题。 面向复杂的未来 《人工智能:复杂问题求解的结构和策略》(第6版)以其全面、深入的视角,系统地梳理了人工智能领域的最新进展和核心理论。它不仅为初学者提供了坚实的基础,也为资深研究者提供了丰富的参考。本书将理论知识与实际应用紧密结合,通过大量的案例分析和算法阐释,帮助读者掌握解决现实世界复杂问题的关键工具和方法。无论您是希望深入理解AI技术原理的研究人员,还是期望将AI应用于实际业务的工程师,亦或是对智能科学充满好奇的学生,本书都将是您不可或缺的宝贵资源,助您在人工智能的广阔天地中,开启探索复杂问题求解的新篇章。