人工智能:复杂问题求解的结构和策略(英文版)(第6版) pdf epub mobi txt 电子书 下载 2024

图书介绍


人工智能:复杂问题求解的结构和策略(英文版)(第6版)

简体网页||繁体网页
[美] 卢格尔 著



点击这里下载
    

想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-13


类似图书 点击查看全场最低价

出版社: 机械工业出版社
ISBN:9787111256564
版次:1
商品编码:10058924
品牌:机工出版
包装:平装
丛书名: 经典原版书库
开本:32开
出版时间:2009-03-01
用纸:胶版纸
页数:753
正文语种:英语

人工智能:复杂问题求解的结构和策略(英文版)(第6版) epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

相关图书



人工智能:复杂问题求解的结构和策略(英文版)(第6版) epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

人工智能:复杂问题求解的结构和策略(英文版)(第6版) pdf epub mobi txt 电子书 下载



具体描述

编辑推荐

  《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》是一本经典的人工智能教材,全面阐述了人工智能的基础理论,有效结合了求解智能问题的数据结构以及实现的算法,把人工智能的应用程序应用于实际环境中,并从社会和哲学、心理学以及神经生理学角度对人工智能进行了独特的讨论。《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》新增内容新增一章,介绍用于机器学习的随机方法,包括一阶贝叶斯网络、各种隐马尔可夫模型,马尔可夫随机域推理和循环信念传播。
  介绍针对期望大化学习以及利用马尔可夫链蒙特卡罗采

内容简介

  《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》英文影印版由PearsonEducationAsiaLtd授权机械工业出版社少数出版。未经出版者书面许可,不得以任何方式复制或抄袭《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》内容。
  仅限于中华人民共和国境内(不包括中国香港、澳门特别行政区和中国台湾地区)销售发行。
  《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》封面贴有PearsonEducation(培生教育出版集团)激光防伪标签,无标签者不得销售。

作者简介

  George F.Luger 1973年在宾夕法尼亚大学获得博士学位,并在之后的5年间在爱丁堡大学人工智能系进行博士后研究,现在是新墨西哥大学计算机科学研究、语言学及心理学教授。

内页插图

精彩书评

  “在该领域里学生经常遇到许罗很难的概念,通过深刻的实例与简单明了的祝圈,该书清晰而准确垲阚述了这些概念。”
  ——Toseph Lewis,圣迭戈州立大学
  “本书是人工智能课程的完美补充。它既给读者以历史的现点,又给幽所有莰术的宾用指南。这是一本必须要推荐的人工智能的田书。”
  ——-Pascal Rebreyend,瑞典达拉那大学
  “该书的写作风格和全面的论述使它成为人工智能领域很有价值的文献。”
  ——Malachy Eat

目录

Preface
Publishers Acknowledgements
PART Ⅰ ARTIFIClAL INTELLIGENCE:ITS ROOTS AND SCOPE
1 A1:HISTORY AND APPLICATIONS
1.1 From Eden to ENIAC:Attitudes toward Intelligence,Knowledge,andHuman Artifice
1.2 0verview ofAl Application Areas
1.3 Artificial Intelligence A Summary
1.4 Epilogue and References
1.5 Exercises

PART Ⅱ ARTIFlClAL INTELLIGENCE AS REPRESENTATION AN D SEARCH
2 THE PREDICATE CALCULUS
2.0 Intr0血ction
2.1 The Propositional Calculus
2.2 The Predicate Calculus
2.3 Using Inference Rules to Produce Predicate Calculus Expressions
2.4 Application:A Logic-Based Financial Advisor
2.5 Epilogue and References
2.6 Exercises

3 STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH
3.0 Introducfion
3.1 GraphTheory
3.2 Strategies for State Space Search
3.3 using the state Space to Represent Reasoning with the Predicate Calculus
3.4 Epilogue and References
3.5 Exercises

4 HEURISTIC SEARCH
4.0 Introduction
4.l Hill Climbing and Dynamic Programmin9
4.2 The Best-First Search Algorithm
4.3 Admissibility,Monotonicity,and Informedness
4.4 Using Heuristics in Games
4.5 Complexity Issues
4.6 Epilogue and References
4.7 Exercises

5 STOCHASTIC METHODS
5.0 Introduction
5.1 The Elements ofCountin9
5.2 Elements ofProbabilityTheory
5.3 Applications ofthe Stochastic Methodology
5.4 BayesTheorem
5.5 Epilogue and References
5.6 Exercises

6 coNTROL AND IMPLEMENTATION OF STATE SPACE SEARCH
6.0 Introduction l93
6.1 Recursion.Based Search
6.2 Production Systems
6.3 The Blackboard Architecture for Problem Solvin9
6.4 Epilogue and References
6.5 Exercises

PARTⅢ CAPTURING INTELLIGENCE:THE AI CHALLENGE
7 KNOWLEDGE REPRESENTATION
7.0 Issues in Knowledge Representation
7.1 A BriefHistory ofAI Representational Systems
7.2 Conceptual Graphs:A Network Language
7.3 Alternative Representations and Ontologies
7.4 Agent Based and Distributed Problem Solving
7.5 Epilogue and References
7.6 Exercises

8 STRONG METHOD PROBLEM SOLVING
8.0 Introduction
8.1 Overview ofExpert Sygem Technology
8.2 Rule.Based Expert Sygems
8.3 Model-Based,Case Based and Hybrid Systems
8.4 Planning
8.5 Epilogue and References
8.6 Exercises
9 REASONING IN UNCERTAIN STUATIONS
9.0 Introduction
9.1 Logic-Based Abductive Inference
9.2 Abduction:Alternatives to Logic
9.3 The Stochastic Approach to Uncertainty
9.4 Epilogue and References
9.5 Exercises

PART Ⅳ
MACHINE LEARNING
10 MACHINE LEARNING:SYMBOL-BASED
10.0 Introduction
10.1 A Framework for Symbol based Learning
10.2 version Space Search
10.3 The ID3 Decision Tree Induction Algorithm
10.4 Inductive Bias and Learnability
10.5 Knowledge and Learning
10.6 Unsupervised Learning
10.7 Reinforcement Learning
10.8 Epilogue and Referenees
10.9 Exercises

11 MACHINE LEARNING:CONNECTIONtST
11.0 Introduction
11.1 Foundations for Connectionist Networks
11.2 Perceptron Learning
11.3 Backpropagation Learning
11.4 Competitive Learning
11.5 Hebbian Coincidence Learning
11.6 Attractor Networks or“Memories”
11.7 Epilogue and References
11.8 Exercises 506

12 MACHINE LEARNING:GENETIC AND EMERGENT
12.0 Genetic and Emergent MedeIs ofLearning
12.1 11Ic Genetic Algorithm
12.2 Classifier Systems and Genetic Programming
12.3 Artmcial Life and Society-Based Learning
12.4 EpilogueandReferences
12.5 Exercises

13 MACHINE LEARNING:PROBABILISTIC
13.0 Stochastic andDynamicModelsofLearning
13.1 Hidden Markov Models(HMMs)
13.2 DynamicBayesianNetworksandLearning
13.3 Stochastic Extensions to Reinforcement Learning
13.4 EpilogueandReferences
13.5 Exercises

PART Ⅴ
AD,ANCED TOPlCS FOR Al PROBLEM SOLVING
14 AUTOMATED REASONING
14.0 Introduction to Weak Methods inTheorem Proving
14.1 TIIeGeneralProblem SolverandDifiel"enceTables
14.2 Resolution TheOrem Proving
14.3 PROLOG and Automated Reasoning
14.4 Further Issues in Automated Reasoning
14.5 EpilogueandReferences
14.6 Exercises

15 UNDERs-rANDING NATURAL LANGUAGE
15.0 TheNaturalLang~~geUnderstandingProblem
15.1 Deconstructing Language:An Analysis
15.2 Syntax
15.3 TransitionNetworkParsers and Semantics
15.4 StochasticTools forLanguage Understanding
15.5 Natural LanguageApplications
15.6 Epilogue and References
15.7 Exercises
……
PART Ⅵ EPILOGUE
16 ARTIFICIAL INTELLIGENCE AS EMPIRICAL ENQUIRY

精彩书摘

  postconditions of each action are in.the column below it. For example, row 5 lists the pre-conditions for pickup(X) and Column 6 lists the postconditions (the add and delete lists) ofpickup(X). These postconditions are placed in the row of the action that uses them as pre-conditions, organizing them in a manner relevant to further actions. The triangle tablespurpose is to properly interleave the preconditions and postconditions of each of thesmaller actions that make up the larger goal. Thus, triangle tables address non-linearityissues in planning on the macro operator level; Partial-Order Planners (Russell and Norvig1995) and other approaches have further addressed these issues.
  One advantage of triangle tables is the assistance they can offer in attempting torecover from unexpected happenings, such as a block being slightly out of place, or acci-dents, such as dropping a block. Often an accident can require backing up several stepsbefore the plan can be resumed. When something goes wrong with a solution the plannercan go back into the rows and columns of the triangle table to check what is true. Once theplanner has figured out what is still true within the rows and columns, it then knows whatthe next step must be if the larger solution is to be restarted. This is formalized with thenotion of a kernel.
  The nth kernel is the intersection of all rows below and including the nth row and allcolumns to the left of and including the rtth column. In Figure 8.21 we have outlined thethird kernel in bold. In carrying out a plan represented in a triangle table, the ith operation(that is, the operation in row i) may be performed only if all predicates contained in the ithkernel aretrue. This offers a straightforward way of verifying that a step can be taken andalso supports systematic recovery from any disruption of the plan. Given a triangle table,we find and execute the highest-numbered action whose kernel is enabled.

前言/序言

  I was very pleased to be asked to produce the sixth edition of my artificial intelligencebook. It is a compliment to the earlier editions, started over twenty years ago, that ourapproach to AI has been so highly valued. It is also exciting that, as new development inthe field emerges, we are able to present much of it in each new edition. We thank ourmany readers, colleagues, and students for keeping our topics relevant and our presenta-tion up to date.
  Many sections of the earlier editions have endured remarkably well, including thepresentation of logic, search algorithms, knowledge representation, production systems,machine learning, and, in the supplementary materials, the programming techniquesdeveloped in Lisp, Prolog, and with this edition, Java. These remain central to the practiceof artificial intelligence, and a constant in this new edition.
  This book remains accessible. We introduce key representation techniques includinglogic, semantic and connectionist networks, graphical models, and many more. Our searchalgorithms are presented clearly, first in pseudocode, and then in the supplementary mate-rials, many of them are implemented in Prolog, Lisp, and/or Java. 人工智能:复杂问题求解的结构和策略(英文版)(第6版) 电子书 下载 mobi epub pdf txt

人工智能:复杂问题求解的结构和策略(英文版)(第6版) pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

一本经典的人工智能书,比较系统,基础,顺带学习英文~

评分

  价格好--8X折

评分

评分

经典书,慢慢研究把~~~~

评分

很好,很有学习价值,想多买两本,没货了。

评分

很厚的一本书,七百多页,这个价钱值了

评分

经典书,慢慢研究把~~~~

评分

东西还行,物流也快~

评分

必读书籍

类似图书 点击查看全场最低价

人工智能:复杂问题求解的结构和策略(英文版)(第6版) pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


人工智能:复杂问题求解的结构和策略(英文版)(第6版) bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.coffeedeals.club All Rights Reserved. 静流书站 版权所有