Python科学计算(第2版)(附光盘)

Python科学计算(第2版)(附光盘) pdf epub mobi txt 电子书 下载 2025

张若愚 著
图书标签:
  • Python
  • 科学计算
  • 数值分析
  • 数据分析
  • 算法
  • 编程
  • 计算机科学
  • 高等教育
  • 教材
  • 光盘
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 清华大学出版社
ISBN:9787302426585
版次:2
商品编码:11918059
品牌:清华大学
包装:平装
开本:16开
出版时间:2016-04-01
用纸:胶版纸
页数:716
字数:1083000
附件:光盘

具体描述

产品特色


编辑推荐

  1. 使用Python各种扩展库完成数值计算、界面制作、三维可视化、图像处理、提高运算速度等任务
  2. 光盘中提供作者本人整合开发的便携式运行环境WinPython,省去读者一一收集Python各个扩展库并安装的麻烦,涵盖NumPy、SciPy、matplotlib、Pandas、SymPy、TVTK、Mayavi、OpenCV、Cython等
  3. 文前精美彩插演示书中示例所展现的Python各扩展库的强大处理效果,装帧和排版都十分考究

内容简介

  《Python 科学计算(第2版)》详细介绍Python科学计算中常用的扩展库NumPy、SciPy、matplotlib、Pandas、SymPy、TTK、Mayavi、OpenCV、Cython,涉及数值计算、界面制作、三维可视化、图像处理、提高运算效率等多方面的内容。所附光盘中包含所有章节的Notebook以及便携式运行环境WinPython,以方便读者运行书中所有实例。

作者简介

  张若愚,毕业于华中理工大学(现华中科技大学)通信工程专业,2004年获日本姬路工业大学(现兵库县立大学)硕士学位。毕业后于日本神户制钢综合研究所从事研究开发工作至今,研究方向为:嵌入式DSP信号处理系统开发,嵌入式MCU控制系统开发,工业控制软件开发,信号处理、数据处理以及生产系统的计算机模拟。在工作中他积极采用Python作为主要编程语言,在数据处理、信号分析、工业控制、算法模拟等领域取得了较好的研究成果。已完成的研究课题有:嵌入式声音分离系统、车载音响设备、超声波探伤系统、压缩机系统的数字模拟等。

目录

第1章 Python科学计算环境的安装与简介 1
1.1 Python简介 1
1.1.1 Python 2还是Python 3 1
1.1.2 开发环境 2
1.1.3 集成开发环境(IDE) 5
1.2 IPython Notebook入门 9
1.2.1 基本操作 10
1.2.2 魔法(Magic)命令 12
1.2.3 Notebook的显示系统 20
1.2.4 定制IPython Notebook 24
1.3 扩展库介绍 27
1.3.1 数值计算库 27
1.3.2 符号计算库 28
1.3.3 绘图与可视化 28
1.3.4 数据处理和分析 29
1.3.5 界面设计 30
1.3.6 图像处理和计算机视觉 31
1.3.7 提高运算速度 31
第2章 NumPy-快速处理数据 33
2.1 ndarray对象 33
2.1.1 创建 34
2.1.2 元素类型 35
2.1.3 自动生成数组 37
2.1.4 存取元素 40
2.1.5 多维数组 43
2.1.6 结构数组 47
2.1.7 内存结构 50
2.2 ufunc函数 56
2.2.1 四则运算 58
2.2.2 比较运算和布尔运算 59
2.2.3 自定义ufunc函数 61
2.2.4 广播 62
2.2.5 ufunc的方法 66
2.3 多维数组的下标存取 68
2.3.1 下标对象 68
2.3.2 整数数组作为下标 70
2.3.3 一个复杂的例子 72
2.3.4 布尔数组作为下标 73
2.4 庞大的函数库 74
2.4.1 随机数 74
2.4.2 求和、平均值、方差 77
2.4.3 大小与排序 81
2.4.4 统计函数 86
2.4.5 分段函数 89
2.4.6 操作多维数组 92
2.4.7 多项式函数 96
2.4.8 多项式函数类 98
2.4.9 各种乘积运算 103
2.4.10 广义ufunc函数 106
2.5 实用技巧 110
2.5.1 动态数组 110
2.5.2 和其他对象共享内存 112
2.5.3 与结构数组共享内存 115
第3章 SciPy-数值计算库 117
3.1 常数和特殊函数 117
3.2 拟合与优化-optimize 119
3.2.1 非线性方程组求解 120
3.2.2 最小二乘拟合 121
3.2.3 计算函数局域最小值 125
3.2.4 计算全域最小值 127
3.3 线性代数-linalg 128
3.3.1 解线性方程组 129
3.3.2 最小二乘解 130
3.3.3 特征值和特征向量 132
3.3.4 奇异值分解-SVD 134
3.4 统计-stats 136
3.4.1 连续概率分布 136
3.4.2 离散概率分布 139
3.4.3 核密度估计 140
3.4.4 二项分布、泊松分布、伽玛分布 142
3.4.5 学生t-分布与t检验 147
3.4.6 卡方分布和卡方检验 151
3.5 数值积分-integrate 154
3.5.1 球的体积 154
3.5.2 解常微分方程组 156
3.5.3 ode类 157
3.5.4 信号处理-signal 164
3.5.5 中值滤波 164
3.5.6 滤波器设计 165
3.5.7 连续时间线性系统 167
3.6 插值-interpolate 172
3.6.1 一维插值 172
3.6.2 多维插值 177
3.7 稀疏矩阵-sparse 181
3.7.1 稀疏矩阵的存储形式 182
3.7.2 最短路径 183
3.8 图像处理-ndimage 186
3.8.1 形态学图像处理 187
3.8.2 图像分割 192
3.9 空间算法库-spatial 195
3.9.1 计算最近旁点 195
3.9.2 凸包 199
3.9.3 沃罗诺伊图 201
3.9.4 德劳内三角化 204
第4章 matplotlib-绘制精美的图表 207
4.1 快速绘图 207
4.1.1 使用pyplot模块绘图 207
4.1.2 面向对象方式绘图 210
4.1.3 配置属性 211
4.1.4 绘制多子图 212
4.1.5 配置文件 215
4.1.6 在图表中显示中文 217
4.2 Artist对象 220
4.2.1 Artist的属性 221
4.2.2 Figure容器 223
4.2.3 Axes容器 224
4.2.4 Axis容器 226
4.2.5 Artist对象的关系 230
4.3 坐标变换和注释 231
4.3.1 4种坐标系 234
4.3.2 坐标变换的流水线 236
4.3.3 制作阴影效果 240
4.3.4 添加注释 241
4.4 块、路径和集合 243
4.4.1 Path与Patch 243
4.4.2 集合 245
4.5 绘图函数简介 255
4.5.1 对数坐标图 255
4.5.2 极坐标图 256
4.5.3 柱状图 257
4.5.4 散列图 258
4.5.5 图像 259
4.5.6 等值线图 261
4.5.7 四边形网格 264
4.5.8 三角网格 267
4.5.9 箭头图 269
4.5.10 三维绘图 273
4.6 matplotlib技巧集 274
4.6.1 使用agg后台在图像上绘图 274
4.6.2 响应鼠标与键盘事件 277
4.6.3 动画 285
4.6.4 添加GUI面板 288
第5章 Pandas-方便的数据分析库 291
5.1 Pandas中的数据对象 291
5.1.1 Series对象 291
5.1.2 DataFrame对象 293
5.1.3 Index对象 297
5.1.4 MultiIndex对象 298
5.1.5 常用的函数参数 300
5.1.6 DataFrame的内部结构 301
5.2 下标存取 303
5.2.1 []操作符 304
5.2.2 .loc[]和.iloc[]存取器 304
5.2.3 获取单个值 306
5.2.4 多级标签的存取 306
5.2.5 query()方法 307
5.3 文件的输入输出 307
5.3.1 CSV文件 308
5.3.2 HDF5文件 309
5.3.3 读写数据库 313
5.3.4 使用Pickle序列化 314
5.4 数值运算函数 315
5.5 时间序列 323
5.5.1 时间点、时间段、时间间隔 323
5.5.2 时间序列 326
5.5.3 与NaN相关的函数 329
5.5.4 改变DataFrame的形状 333
5.6 分组运算 338
5.6.1 groupby()方法 339
5.6.2 GroupBy对象 340
5.6.3 分组-运算-合并 341
5.7 数据处理和可视化实例 347
5.7.1 分析Pandas项目的提交历史 347
5.7.2 分析空气质量数据 354
第6章 SymPy-符号运算好帮手 359
6.1 从例子开始 359
6.1.1 封面上的经典公式 359
6.1.2 球体体积 361
6.1.3 数值微分 362
6.2 数学表达式 365
6.2.1 符号 365
6.2.2 数值 367
6.2.3 运算符和函数 368
6.2.4 通配符 371
6.3 符号运算 373
6.3.1 表达式变换和化简 373
6.3.2 方程 376
6.3.3 微分 377
6.3.4 微分方程 378
6.3.5 积分 379
6.4 输出符号表达式 380
6.4.1 lambdify 381
6.4.2 用autowrap()编译表达式 381
6.4.3 使用cse()分步输出表达式 384
6.5 机械运动模拟 385
6.5.1 推导系统的微分方程 386
6.5.2 将符号表达式转换为程序 388
6.5.3 动画演示 389
第7章 Traits & TraitsUI-轻松制作图形界面 393
7.1 Traits类型入门 393
7.1.1 什么是Traits属性 393
7.1.2 Trait属性的功能 396
7.1.3 Trait类型对象 399
7.1.4 Trait的元数据 401
7.2 Trait类型 403
7.2.1 预定义的Trait类型 403
7.2.2 Property属性 406
7.2.3 Trait属性监听 408
7.2.4 Event和Button属性 411
7.2.5 动态添加Trait属性 412
7.3 TraitsUI入门 413
7.3.1 默认界面 414
7.3.2 用View定义界面 415
7.4 用Handler控制界面和模型 425
7.4.1 用Handler处理事件 426
7.4.2 Controller和UIInfo对象 429
7.4.3 响应Trait属性的事件 431
7.5 属性编辑器 432
7.5.1 编辑器演示程序 433
7.5.2 对象编辑器 436
7.5.3 自定义编辑器 440
7.6 函数曲线绘制工具 444
第8章 TVTK与Mayavi-数据的三维可视化 451
8.1 VTK的流水线(Pipeline) 452
8.1.1 显示圆锥 452
8.1.2 用ivtk观察流水线 455
8.2 数据集 461
8.2.1 ImageData 461
8.2.2 RectilinearGrid 466
8.2.3 StructuredGrid 467
8.2.4 PolyData 470
8.3 TVTK的改进 473
8.3.1 TVTK的基本用法 474
8.3.2 Trait属性 475
8.3.3 序列化 476
8.3.4 集合迭代 476
8.3.5 数组操作 477
8.4 TVTK可视化实例 478
8.4.1 切面 479
8.4.2 等值面 484
8.4.3 流线 487
8.4.4 计算圆柱的相贯线 491
8.5 用mlab快速绘图 496
8.5.1 点和线 497
8.5.2 Mayavi的流水线 498
8.5.3 二维图像的可视化 501
8.5.4 网格面mesh 505
8.5.5 修改和创建流水线 508
8.5.6 标量场 511
8.5.7 矢量场 513
8.6 将TVTK和Mayavi嵌入界面 515
8.6.1 TVTK场景的嵌入 516
8.6.2 Mayavi场景的嵌入 518
第9章 OpenCV-图像处理和计算机视觉 523
9.1 图像的输入输出 523
9.1.1 读入并显示图像 523
9.1.2 图像类型 524
9.1.3 图像输出 525
9.1.4 字节序列与图像的相互转换 526
9.1.5 视频输出 527
9.1.6 视频输入 529
9.2 图像处理 530
9.2.1 二维卷积 530
9.2.2 形态学运算 532
9.2.3 填充-floodFill 534
9.2.4 去瑕疵-inpaint 536
9.3 图像变换 537
9.3.1 几何变换 537
9.3.2 重映射-remap 540
9.3.3 直方图 543
9.3.4 二维离散傅立叶变换 547
9.3.5 用双目视觉图像计算深度信息 550
9.4 图像识别 553
9.4.1 用霍夫变换检测直线和圆 553
9.4.2 图像分割 558
9.4.3 SURF特征匹配 561
9.5 形状与结构分析 564
9.5.1 轮廓检测 565
9.5.2 轮廓匹配 568
9.6 类型转换 569
9.6.1 分析cv2的源程序 570
9.6.2 Mat对象 572
9.3.3 在cv和cv2之间转换图像对象 574
第10章 Cython-编译Python程序 575
10.1 配置编译器 575
10.2 Cython入门 577
10.2.1 计算矢量集的距离矩阵 577
10.2.2 将Cython程序编译成扩展模块 579
10.2.3 C语言中的Python对象类型 581
10.2.4 使用cdef关键字声明变量类型 582
10.2.5 使用def定义函数 585
10.2.6 使用cdef定义C语言函数 586
10.3 高效处理数组 587
10.3.1 Cython的内存视图 587
10.3.2 用降采样提高绘图速度 592
10.4 使用Python标准对象和API 596
10.4.1 操作list对象 596
10.4.2 创建tuple对象 597
10.4.3 用array.array作为动态数组 598
10.5 扩展类型 600
10.5.1 扩展类型的基本结构 600
10.5.2 一维浮点数向量类型 601
10.5.3 包装ahocorasick库 606
10.6 Cython技巧集 612
10.6.1 创建ufunc函数 613
10.6.2 快速调用DLL中的函数 617
10.6.3 调用BLAS函数 620
第11章 实例 627
11.1 使用泊松混合合成图像 627
11.1.1 泊松混合算法 627
11.1.2 编写代码 629
11.1.3 演示程序 632
11.2 经典力学模拟 632
11.2.1 悬链线 633
11.2.2 最速降线 638
11.2.3 单摆模拟 641
11.3 推荐算法 644
11.3.1 读入数据 645
11.3.2 推荐性能评价标准 646
11.3.3 矩阵分解 647
11.3.4 使用最小二乘法实现矩阵分解 648
11.3.5 使用Cython迭代实现矩阵分解 651
11.4 频域信号处理 654
11.4.1 FFT知识复习 654
11.4.2 合成时域信号 657
11.4.3 观察信号的频谱 660
11.4.4 卷积运算 671
11.5 布尔可满足性问题求解器 675
11.5.1 用Cython包装PicoSAT 678
11.5.2 数独游戏 682
11.5.3 扫雷游戏 686
11.6 分形 693
11.6.1 Mandelbrot集合 693
11.6.2 迭代函数系统 699
11.6.3 L-System分形 706
11.6.4 分形山脉 710

精彩书摘

  Python科学计算环境的安装与简介
  1.1 Python简介
  Python是一种解释型、面向对象、动态的高级程序设计语言。自从20世纪90年代初Python语言诞生至今,它逐渐被广泛应用于处理系统管理任务和开发Web系统。目前Python已经成为最受欢迎的程序设计语言之一。
  由于Python语言的简洁、易读以及可扩展性,在国外用Python做科学计算的研究机构日益增多,一些知名大学已经采用Python教授程序设计课程。众多开源的科学计算软件包都提供了Python的调用接口,例如计算机视觉库OpenCV、三维可视化库VTK、复杂网络分析库igraph等。而Python专用的科学计算扩展库就更多了,例如三个十分经典的科学计算扩展库:NumPy、SciPy和matplotlib,它们分别为Python提供了快速数组处理、数值运算以及绘图功能。因此Python语言及其众多的扩展库所构成的开发环境十分适合工程技术、科研人员处理实验数据、制作图表,甚至开发科学计算应用程序。近年随着数据分析扩展库Pandas、机器学习扩展库scikit-learn以及IPython Notebook交互环境的日益成熟,Python也逐渐成为数据分析领域的首选工具。
  说起科学计算,首先会被提到的可能是MATLAB。然而除了MATLAB的一些专业性很强的工具箱目前还无法替代之外,MATLAB的大部分常用功能都可以在Python世界中找到相应的扩展库。和MATLAB相比,用Python做科学计算有如下优点:
  ● 首先,MATLAB是一款商用软件,并且价格不菲。而Python完全免费,众多开源的科学计算库都提供了Python的调用接口。用户可以在任何计算机上免费安装Python及其绝大多数扩展库。
  ● 其次,与MATLAB相比,Python是一门更易学、更严谨的程序设计语言。它能让用户编写出更易读、更易维护的代码。
  ● 最后,MATLAB主要专注于工程和科学计算。然而即使在计算领域,也经常会遇到文件管理、界面设计、网络通信等各种需求。而Python有着丰富的扩展库,可以轻易完成各种高级任务,开发者可以用Python实现完整应用程序所需的各种功能。
  1.1.1 Python2还是Python3
  自从2008年发布以来,Python3经历了5个小版本的更迭,无论是语法还是标准库都发展得十分成熟。许多重要的扩展库也已经逐渐同时支持Python2和Python3。但是由于Python3不向下兼容,目前大多数开发者仍然在生产环境中使用Python 2.7。在PyCon2014大会上,Python之父宣布Python 2.7的官方支持延长至2020年。因此本书仍然使用Python 2.7作为开发环境。
  在本书涉及的扩展库中,IPython、NumPy、SciPy、matplotlib、Pandas、SymPy、Cython、Spyder和OpenCV等都已经支持Python 3,而Traits、TraitsUI、TVTK、Mayavi等扩展库则尚未着手Python 3的移植。虽然一些新兴的三维可视化扩展库正朝着替代Mayavi的方向努力,但目前Python环境中尚未有能替代VTK和Mayavi的专业级别的三维可视化扩展库,因此本书仍保留第1版中相关的章节。
  1.1.2 开发环境
  和MATLAB等商用软件不同,Python的众多扩展库由许多社区分别维护和发布,因此要一一将其收集齐全并安装到计算机中是一件十分耗费时间和精力的事情。本节介绍两个科学计算用的Python集成软件包。读者只需要下载并执行一个安装程序,就能安装好本书涉及的所有扩展库。
  ……

前言/序言

  第1版序
  Python理所当然地被视为一门通用的程序设计语言,非常适合于网站开发、系统管理以及通用的业务应用程序。它为诸如YouTube这样的网站系统、Red Hat操作系统中不可或缺的安装工具以及从云管理到投资银行等大型企业的IT系统提供技术支持,从而赢得了如此高的声誉。Python还在科学计算领域建立了牢固的基础,覆盖了从石油勘探的地震数据处理到量子物理等范围广泛的应用场景。Python这种广泛的适用性在于,这些看似不同的应用领域通常在某些重要的方面是重叠的。易于与数据库连接、在网络上发布信息并高效地进行复杂计算的应用程序对于许多行业是至关重要的,而Python最主要的长处就在于它能让开发者迅速地创建这样的工具。
  实际上,Python与科学计算的关系源远流长。吉多?范罗苏姆创建这门语言,还是在他在荷兰阿姆斯特丹的国家数学和计算机科学研究学会(CWI)的时候。当时只是作为“课余”的开发,但是很快其他人也开始为之做出贡献。从1994年开始的头几次Python研讨会,都是在大洋彼岸的科研机构举行的。例如国家标准技术研究所(NIST)、美国地质学会以及劳伦斯利福摩尔国家实验室(LLNL),所有这些都是以科研为中心的机构。当时Python 1.0刚刚发布,与会者们就已经开始打造Python的数学计算工具。10多年过去了,我们欣喜地看到,我们在开发具有惊人能力的工具集以及建设多彩的社区方面做出了如此多的成绩。很合时宜的是,就我所知的第一本涵盖了Python的主要科学计算工具的综合性著作,在另一个海洋之遥的中国编著并出版了。展望今后的十几年,我迫不及待地想看到我们能共同创建出怎样的未来。
  吉多他本人并不是科学家或工程师。他在CWI的计算机科学部门时,为了缓解为阿米巴(Amoeba)操作系统创建系统管理工具的痛苦,他创建了Python。当时那些系统管理工具都是用C语言编写的。于是Python就成了填补shell脚本和C语言之间空白的工具。操作系统工具与计算逆矩阵或快速傅立叶变换是完全不同的领域,但是从Python诞生开始,世界各地的许多科学家就成了它最早期的采用者。吉多成功地创建了一门能与他们的C和Fortran代码完美结合的、具有优雅表现力的程序语言。并且,吉多是一位愿意听取建议并添加关键功能的语言设计师,例如支持复数就是专门针对科学领域的。随着NumPy的前身——Numeric的诞生,Python获得了一个高效且强大的数值运算工具,它巩固了在未来几十年中,Python作为领先的科学计算语言的地位。
  对于一些人来说,“科学计算编程”会让人联想起Numerical Recipes in C中描述的那些复杂算法,或是研究生们在深夜中努力打造程序的场景。但是真实情况所涵盖的范围更广泛——从底层的算法设计到具有高级绘图功能的用户界面开发。而后者的重要性却常常被忽视了。幸运的是在本书中,作者为我们介绍了科学计算编程所需的各个方面。从NumPy库和SciPy算法工具库的基础开始,介绍了任何科学计算应用程序所需的基本工具。然后,本书很恰当地介绍了二维绘图以及三维可视化库——matplotlib、Chaco、Mayavi。用Traits和TraitsUI进行应用程序和界面开发,以及用Cython、Weave、ctypes和SWIG等与传统的C语言库相互结合等内容在书中也有很好的介绍。除了这些核心的工具之外,本书还介绍了使用SymPy进行数学符号运算以及其他的各种有用的主题。
  所有这些主题都被汇编到一本书中真是一件令人欣喜的事情。本书所提供的一站式服务,能够指导读者从最初的入门直到创建一个漂亮的、全功能的分析与模拟应用程序。
  Eric Jones
  2011年12月8日
  关于序言作者
  Eric Jones是Enthought公司的CEO,他在工程和软件开发领域拥有广泛的背景,指导Enthought公司的产品工程和软件设计。在共同创建Enthought公司之前,他在杜克大学电机工程学系从事数值电磁学以及遗传优化算法方面的研究,并获得了该系的硕士和博士学位。他教授过许多用Python做科学计算的课程,并且是Python软件基金会的成员。
  关于Enthought公司
  Enthought是一家位于美国得克萨斯州首府奥斯汀的软件公司,主要使用Python从事科学计算工具的开发。本书中介绍的NumPy、SciPy、Traits、TraitsUI、Chaco、TVTK以及Mayavi均为该公司开发或维护的开源程序库。
  前  言
  Python世界的发展日新月异,在本书第1版出版之后,Python在数据分析、科学计算领域又出现了许多令人兴奋的进展:
  ●IPython从增强的交互式解释器发展到Jupyter Notebook项目,它已经成为Python科学计算界的标准配置。
  ●Pandas经过几个版本的更新,目前已经成为数据清洗、处理和分析的不二选择。
  ●OpenCV官方的扩展库cv2已经正式发布,它的众多图像处理函数能直接对NumPy数组进行处理,编写图像处理、计算机视觉程序变得更方便、简洁。
  ●matplotlib 2.0即将发布,它将使用更美观的默认样式。
  ●Cython内置支持NumPy数组,它已经逐渐成为编写高效运算扩展库的首选工具。
  ●NumPy、SciPy等也经历了几个版本的更新,许多计算变得更快捷,功能也更加丰富。
  ●WinPython、Anaconda等新兴的Python集成环境无须安装,使得开发与共享Python程序更方便快捷。
  本书第2版紧随各个扩展库的发展,将最新、最实用的内容呈现给读者。除了数值计算之外,本书还包含了界面制作、三维可视化、图像处理、提高运算效率等方面的内容。最后一章综合使用本书介绍的各个扩展库,完成几个有趣的实例项目。
  本书完全采用IPython Notebook编写,保证了书中所有代码及输出的正确性。附盘中附带所有章节的Notebook以及便携式运行环境WinPython,以方便读者运行书中所有实例。
  本书适合于工科高年级本科生、研究生、工程技术人员以及计算机开发人员阅读,也适合阅读过第1版的读者了解各个扩展库的最新进展,进一步深入学习。
  阅读本书的读者需要掌握Python语言的一些基础知识,Cython章节需要读者能够阅读C语言代码。
  除封面署名的作者外,参加本书编写的人员还有张佑林、张东等人,在此一并表示感谢。

《Python科学计算(第2版)》 一本引领您深入Python科学计算世界、掌握前沿工具与实战技巧的权威指南 如果您渴望驾驭Python这一强大的编程语言,将其应用于数据分析、科学模拟、数值计算、机器学习等诸多领域,那么《Python科学计算(第2版)》将是您不可或缺的伙伴。本书不仅是一本入门教程,更是一本深度探索的实践手册,旨在帮助读者从零基础到精通,全面掌握Python在科学计算领域的应用能力。 本书亮点与价值: 1. 体系化知识构建,循序渐进:本书采用由浅入深的教学模式,首先从Python基础知识讲起,确保即使是编程新手也能快速上手。接着,逐步引入NumPy、Pandas、Matplotlib、SciPy等核心科学计算库,并详细讲解它们的功能、用法和最佳实践。这种结构化的学习路径,让读者能够清晰地理解每个工具在整个科学计算生态中的位置和作用。 2. 核心库深度解析,功能全面: NumPy:作为Python数值计算的基石,本书将深入剖析NumPy的ndarray对象,讲解向量化操作、广播机制、多维数组的索引与切片、数组的运算与统计函数。您将学会如何高效地处理和操作大规模数值数据,这是进行任何科学计算的基础。 Pandas:在数据处理和分析领域,Pandas占据着核心地位。本书将详细介绍DataFrame和Series这两个关键数据结构,带领您掌握数据的读取与写入(CSV、Excel、SQL等)、数据清洗(缺失值处理、异常值检测)、数据转换(合并、连接、重塑)、分组聚合、时间序列分析等实用技巧。 Matplotlib:数据可视化是理解和沟通科学计算结果的关键。本书将详尽讲解Matplotlib的强大绘图功能,从基础的折线图、散点图、柱状图,到更复杂的子图、三维图形、统计图表,并介绍如何自定义图形的样式、标签、图例,使其专业且富有表现力。 SciPy:作为NumPy的扩展,SciPy提供了更广泛的科学计算工具。本书将覆盖SciPy的多个子模块,包括优化(优化算法、函数最小化)、积分(数值积分)、插值、信号处理(傅里叶变换、滤波)、图像处理、线性代数(矩阵运算、特征值分解)、统计(概率分布、假设检验)等。这些工具在解决复杂的科学问题时至关重要。 3. 实战导向,理论与实践并重:本书强调“学以致用”,每讲解一个概念或工具,都会紧随其后提供大量的、贴近实际应用的编程示例。这些示例涵盖了统计学、物理学、生物学、工程学、金融学等多个学科的典型问题,让读者在解决实际问题的过程中巩固知识,提升技能。 4. 跨越时代的前沿主题:在掌握了基础和核心工具后,本书还会引领读者进入更广泛和前沿的领域: 机器学习基础:介绍Python在机器学习领域的常用库,如Scikit-learn,并讲解监督学习(回归、分类)和无监督学习(聚类、降维)的基本概念和常用算法。您将学会如何构建、训练和评估机器学习模型。 数据可视化进阶:在Matplotlib的基础上,还会介绍更高级的可视化库,如Seaborn,用于创建更具统计学意义和美观的图形。 高性能计算与并行化:探讨如何利用Python实现更快的计算,包括使用NumPy的高性能底层实现,以及一些基本的并行计算概念。 5. 全面详尽的附带资源:本书配有光盘,其中包含了书中所有的源代码示例,以及一些额外的练习题和数据集,方便读者对照学习、动手实践,甚至可以基于这些代码进行二次开发,极大地提升了学习效率和深度。 谁适合阅读本书? 编程初学者:对Python有基本了解,但希望将其应用于科学计算领域的读者。 在校学生:计算机科学、数学、物理、工程、生物、统计、金融等相关专业的学生,需要学习科学计算工具和方法。 科研人员与工程师:希望利用Python解决科研或工程问题,进行数据分析、模型构建、仿真计算的专业人士。 数据分析师与数据科学家:希望深入理解Python在数据处理、分析和建模方面更底层的原理和高级技巧的从业者。 对科学计算感兴趣的任何人:渴望掌握一种强大而灵活的工具来探索和解决科学难题的爱好者。 阅读本书,您将获得: 扎实的Python科学计算基础:从数据结构到高级算法,全面掌握核心库的使用。 解决实际问题的能力:通过丰富的案例,将理论知识转化为解决实际问题的能力。 高效的数据处理与分析技能:掌握Pandas,成为数据处理的高手。 出色的数据可视化能力:用Matplotlib和Seaborn将数据转化为直观的图表。 接触前沿科学计算领域:了解机器学习、高性能计算等热门方向的应用。 自信地进行科学探索与创新:拥有强大的工具,您将能够更深入地理解世界,并创造新的可能。 《Python科学计算(第2版)》是一本集权威性、实用性、全面性于一体的著作。它不仅仅是一本书,更是一段深入Python科学计算世界的精彩旅程。通过本书的学习,您将能够自信地运用Python应对各种复杂的科学计算挑战,打开通往更广阔科学领域的大门。立即开始,让Python成为您科学探索的强大引擎!

用户评价

评分

阅读这本书的过程,就像是在一位经验丰富的向导的带领下,探索Python科学计算的广阔天地。我最看重的是它在理论深度和实践广度之间的平衡。它没有停留在对库函数功能的简单罗列,而是深入浅出地讲解了背后的数学原理和算法思想,比如在涉及到统计模型时,书中对假设检验、回归分析的原理讲解就非常到位,这对于我理解模型的适用性和局限性非常有帮助。同时,它又非常注重实际操作,每一个概念的讲解都伴随着清晰的代码实现,让我可以边学边练。我特别关注书中关于时间序列分析的部分,这对我目前的研究课题至关重要。书中关于ARIMA模型、GARCH模型等的介绍,以及如何用Python实现这些模型,都给了我很大的启发。我还注意到书中对机器学习在科学计算中的应用也进行了初步的介绍,这让我看到了将我的数据分析技能扩展到更广泛领域的可能性。虽然某些地方的讲解对我来说还有些挑战,但书中提供的注释和解释,以及光盘中的代码,都在很大程度上帮助我克服了困难。这本书的价值,远不止于学习几行代码,它更在于培养一种解决问题的思维方式。

评分

这本书给我最大的感受是它的“实用性”。我不是那种纯粹为了理论而学习的读者,我更希望学到的知识能够直接应用到实际工作中,解决我遇到的具体问题。这本书恰恰满足了我的这一需求。书中大量的案例都是来源于实际的科学研究和工程项目,比如关于物理模拟、生物信息学数据分析、金融建模等,这些都与我的工作领域有着密切的联系。我尝试书中关于数据可视化的章节,用Matplotlib和Seaborn绘制出了几张非常精美的图表,比我之前自己摸索出来的效果要好得多。更让我惊喜的是,书中还涉及了一些更高级的主题,比如并行计算和GPU加速,虽然我目前还没有深入研究,但了解这些前沿技术的发展方向,对我规划未来的学习路径非常有益。光盘里的代码质量很高,可读性强,而且可以直接运行,这为我节省了大量的调试时间。我还会经常回头翻阅这本书,每次都能从中找到新的灵感和解决方案。这本书确实是一本值得反复研读的工具书。

评分

坦白说,我是一个对细节要求比较高的读者,尤其是在技术书籍中。一本好的书,不仅要内容正确,还要逻辑严谨,表述清晰,并且能够准确地传达作者的意图。这本书在这些方面都做得相当出色。从我对书中关于数值优化的章节的初步了解来看,作者在解释算法原理时,力求严谨,并且在代码实现上,也考虑到了效率和可读性。我特别喜欢书中对一些常用算法的推导过程的讲解,虽然有时会有些抽象,但作者通过图示和通俗的语言,让原本复杂的数学概念变得更容易理解。而且,书中对于API的介绍,也做到了详略得当,既包含了核心功能,又指出了其适用场景。我还在尝试书中关于数据建模的部分,它对模型的选择、参数调整以及结果评估的讲解,都非常有指导意义。书中给出的代码示例,也都经过了充分的测试,很少遇到bug。光盘中的辅助材料,也让我对书中内容有了更全面的理解,比如关于某些算法的更详细的推导或者是一些相关的参考文献。总的来说,这本书是一本经得起推敲的优秀教材。

评分

这本书的整体结构给我留下了深刻的印象。我一直认为一本好的技术书籍,不仅要内容翔实,更要在逻辑组织上做到清晰有序,让读者能够循序渐进地掌握知识。这本书在这一点上做得相当不错,它没有一股脑地将所有知识点倾倒给读者,而是有条理地将复杂的科学计算概念分解开来,从基础的Python语法回顾,到NumPy的数组操作,再到Pandas的数据处理,以及Matplotlib的绘图技巧,每一步都衔接得很自然。我尤其欣赏书中对于每一个知识点都配以大量的代码示例,并且这些示例都经过了精心设计,能够直观地展现出所讲授概念的实际应用。这种“理论+实践”的教学模式,对于像我这样希望通过动手实践来加深理解的读者来说,简直是福音。我还在尝试书中关于数据预处理的部分,它所介绍的缺失值填充、异常值检测等方法,都非常实用,让我能更好地为后续的分析做好准备。并且,这本书的排版也很舒适,文字大小、行距都恰到好处,长时间阅读也不会感到疲劳。光盘的内容我还没来得及细看,但从目录来看,里面包含了很多额外的资源,比如数据集和一些进阶的案例,这无疑会大大提升这本书的价值。

评分

这本书我拿到手已经有一段时间了,但说实话,最近才真正开始深入翻阅。我对Python科学计算一直都很感兴趣,尤其是看到“第2版”这个字样,就觉得它应该比初版有更多的更新和改进,能够跟上技术发展的步伐。我关注的重点在于它是否能提供足够多的实际案例,让我能够将学到的理论知识快速应用到解决科研或工程问题上。我特别希望书中能够涵盖数据可视化、统计分析以及数值计算等核心领域,并且能展示如何利用NumPy、SciPy、Pandas和Matplotlib等主流库来完成这些任务。书中是否有关于如何优化代码性能的章节?对于大型数据集的处理,这本书又会给出怎样的指导?这些都是我非常看重的方面。另外,我还在思考,这本书的作者在编写时,是否充分考虑到了初学者可能遇到的困难,比如在安装配置环境、理解复杂的数学概念时,是否提供了清晰易懂的解释和示例。光盘的附加价值也是我期待的一部分,希望里面能有更多的代码示例、数据集,甚至是一些额外的教程,能够帮助我更全面地掌握书中的内容,并且能够在我遇到书中没有涉及到的更高级主题时,找到进一步学习的入口。总而言之,我对这本书的期望是它能成为我进行Python科学计算学习道路上的一块坚实的基石,让我能够自信地去探索和解决各种实际问题。

评分

emmmmmm。。。。帮别人买的,听说还不错

评分

书很好,京东的活动很给力,抢到优惠券,价格相当合适。谢谢京东提供这么好的活动,可以买到很多很有用的专业书籍,为国家科技进步作出贡献,哈哈哈。

评分

质量不错,实用,活动时期价格也优惠

评分

专业书籍,在京东买比较放心

评分

有光盘最好。不错,推荐大家看看。

评分

当字典翻翻。挺好的

评分

好好好好好好好好好好好好好好好好好好好好好

评分

这是我想要的书,好好学习下,只是给磕了

评分

仰慕已久,大神级作品,关注很久了,终于下手了!

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.coffeedeals.club All Rights Reserved. 静流书站 版权所有