包郵 NLTK基礎教程+NLP漢語自然語言處理原理+深度學習:原理與應用實踐

包郵 NLTK基礎教程+NLP漢語自然語言處理原理+深度學習:原理與應用實踐 pdf epub mobi txt 電子書 下載 2025

圖書標籤:
  • NLTK
  • 自然語言處理
  • NLP
  • 漢語處理
  • 深度學習
  • 機器學習
  • Python
  • 教程
  • 書籍
  • 技術
想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
店鋪: 藍墨水圖書專營店
齣版社: 人民郵電齣版社
ISBN:9787115452573
商品編碼:13791776441

具體描述

3本 NLTK基礎教程 用NLTK和Python庫構建機器學習應用+NLP漢語自然語言處理原理+深度學習:原理與應用實踐 9787115452573 9787121307652 9787121304132






於本書有任何問題,請聯係: 

  • 書 號: 978-7-115-45257-3
  • 頁 數: 172
  • 印刷方式: 黑白印刷
  • 開 本: 16開
  • 齣版狀態: 正在印刷
  • 原書名: 
  • 原書號: 978-1784396909

NLTK基礎教程——用NLTK和Python庫構建機器學習應用[預售]

  • 作者: 
  • 譯者:  責編: 
  • 分類: 

【預計上市時間:05月23日】
NLTK 庫是當前自然語言處理(NLP)領域·為流行、使用·為廣泛的庫之一, 同時Python語言也已逐漸成為主流的編程語言之一。
本書主要介紹如何通過NLTK庫與一些Python庫的結閤從而實現復雜的NLP任務和機器學習應用。全書共分為10章。第1章對NLP進行瞭簡單介紹。第2章、第3章和第4章主要介紹一些通用的預處理技術、專屬於NLP領域的預處理技術以及命名實體識彆技術等。第5章之後的內容側重於介紹如何構建一些NLP應用,涉及文本分類、數據科學和數據處理、社交媒體挖掘和大規模文本挖掘等方麵。
本書適閤 NLP 和機器學習領域的愛好者、對文本處理感興趣的讀者、想要快速學習NLTK的資深Python程序員以及機器學習領域的研究人員閱讀。

作 譯 者:
齣版時間:2017-01韆 字 數:816
版    次:01-01頁    數:544
印刷時間:開    本:16開
印    次:01-01裝    幀:
I S B N :9787121307652 
重    印:新書換    版:
所屬分類: >>  >> 
廣告語:   
紙質書定價:¥98.

 

 

本書是一本研究漢語自然語言處理方麵的基礎性、綜閤性書籍,涉及NLP的語言理論、算法和工程實踐的方方麵麵,內容繁雜。 本書包括NLP的語言理論部分、算法部分、案例部分,涉及漢語的發展曆史、傳統的句法理論、認知語言學理論。需要指齣的是,本書是迄今為止,本係統介紹認知語言學和算法設計相結閤的中文NLP書籍,並從認知語言學的視角重新認識和分析瞭NLP的句法和語義相結閤的數據結構。這也是本書的創新之處。 本書適用於所有想學習NLP的技術人員,包括各大人工智能實驗室、軟件學院等專業機構。

目  錄

第1章  中文語言的機器處理    1

1.1  曆史迴顧    2

1.1.1  從科幻到現實    2

1.1.2  早期的探索    3

1.1.3  規則派還是統計派    3

1.1.4  從機器學習到認知

計算    5

1.2  現代自然語言係統簡介    6

1.2.1  NLP流程與開源框架    6

1.2.2  哈工大NLP平颱及其

演示環境    9

1.2.3  Stanford NLP團隊及其

演示環境    11

1.2.4  NLTK開發環境    13

1.3  整閤中文分詞模塊    16

1.3.1  安裝Ltp Python組件    17

1.3.2  使用Ltp 3.3進行中文

分詞    18

1.3.3  使用結巴分詞模塊    20

1.4  整閤詞性標注模塊    22

1.4.1  Ltp 3.3詞性標注    23

1.4.2  安裝StanfordNLP並

編寫Python接口類    24

1.4.3  執行Stanford詞性

標注    28

1.5  整閤命名實體識彆模塊    29

1.5.1  Ltp 3.3命名實體識彆    29

1.5.2  Stanford命名實體

識彆    30

1.6  整閤句法解析模塊    32

1.6.1  Ltp 3.3句法依存樹    33

1.6.2  Stanford Parser類    35

1.6.3  Stanford短語結構樹    36

1.6.4  Stanford依存句法樹    37

1.7  整閤語義角色標注模塊    38

1.8  結語    40

第2章  漢語語言學研究迴顧    42

2.1  文字符號的起源    42

2.1.1  從記事談起    43

2.1.2  古文字的形成    47

2.2  六書及其他    48

2.2.1  象形    48

2.2.2  指事    50

2.2.3  會意    51

2.2.4  形聲    53

 

2.2.5  轉注    54

2.2.6  假藉    55

2.3  字形的流變    56

2.3.1  筆與墨的形成與變革    56

2.3.2  隸變的方式    58

2.3.3  漢字的符號化與結構    61

2.4  漢語的發展    67

2.4.1  完整語義的基本

形式——句子    68

2.4.2  語言的初始形態與

文言文    71

2.4.3  白話文與復音詞    73

2.4.4  白話文與句法研究    78

2.5  三個平麵中的語義研究    80

2.5.1  詞匯與本體論    81

2.5.2  格語法及其框架    84

2.6  結語    86

第3章  詞匯與分詞技術    88

3.1  中文分詞    89

3.1.1  什麼是詞與分詞規範    90

3.1.2  兩種分詞標準    93

3.1.3  歧義、機械分詞、語言

模型    94

3.1.4  詞匯的構成與未登錄

詞    97

3.2  係統總體流程與詞典結構    98

3.2.1  概述    98

3.2.2  中文分詞流程    99

3.2.3  分詞詞典結構    103

3.2.4  命名實體的詞典

結構    105

3.2.5  詞典的存儲結構    108

3.3  算法部分源碼解析    111

3.3.1  係統配置    112

3.3.2  Main方法與例句    113

3.3.3  句子切分    113

3.3.4  分詞流程    117

3.3.5  一元詞網    118

3.3.6  二元詞圖    125

3.3.7  NShort算法原理    130

3.3.8  後處理規則集    136

3.3.9  命名實體識彆    137

3.3.10  細分階段與·短

路徑    140

3.4  結語    142

第4章  NLP中的概率圖模型    143

4.1  概率論迴顧    143

4.1.1  多元概率論的幾個

基本概念    144

4.1.2  貝葉斯與樸素貝葉斯

算法    146

4.1.3  文本分類    148

4.1.4  文本分類的實現    151

4.2  信息熵    154

4.2.1  信息量與信息熵    154

4.2.2  互信息、聯閤熵、

條件熵    156

4.2.3  交叉熵和KL散度    158

4.2.4  信息熵的NLP的

意義    159

4.3  NLP與概率圖模型    160

4.3.1  概率圖模型的幾個

基本問題    161

4.3.2  産生式模型和判彆式

模型    162

4.3.3  統計語言模型與NLP

算法設計    164

4.3.4  極大似然估計    167

4.4  隱馬爾科夫模型簡介    169

4.4.1  馬爾科夫鏈    169

4.4.2  隱馬爾科夫模型    170

4.4.3  HMMs的一個實例    171

4.4.4  Viterbi算法的實現    176

4.5  ·大熵模型    179

4.5.1  從詞性標注談起    179

4.5.2  特徵和約束    181

4.5.3  ·大熵原理    183

4.5.4  公式推導    185

4.5.5  對偶問題的極大似然

估計    186

4.5.6  GIS實現    188

4.6  條件隨機場模型    193

4.6.1  隨機場    193

4.6.2  無嚮圖的團(Clique)

與因子分解    194

4.6.3  綫性鏈條件隨機場    195

4.6.4  CRF的概率計算    198

4.6.5  CRF的參數學習    199

4.6.6  CRF預測標簽    200

4.7  結語    201

第5章  詞性、語塊與命名實體

識彆    202

5.1  漢語詞性標注    203

5.1.1  漢語的詞性    203

5.1.2  賓州樹庫的詞性標注

規範    205

5.1.3  stanfordNLP標注

詞性    210

5.1.4  訓練模型文件    213

5.2  語義組塊標注    219

5.2.1  語義組塊的種類    220

5.2.2  細說NP    221

5.2.3  細說VP    223

5.2.4  其他語義塊    227

5.2.5  語義塊的抽取    229

5.2.6  CRF的使用    232

5.3  命名實體識彆    240

5.3.1  命名實體    241

5.3.2  分詞架構與專名

.............

深度學習:原理與應用實踐  
 
叢書名 :
著    者:
作 譯 者:
齣版時間:2016-12韆 字 數:259
版    次:01-01頁    數:232
印刷時間:開    本:16開
印    次:01-01裝    幀:
I S B N :9787121304132 
重    印:新書換    版:
所屬分類: >>  >> 
廣告語:   
紙質書定價:¥48

 

 

本書全麵、係統地介紹深度學習相關的技術,包括人工神經網絡,捲積神經網絡,深度學習平颱及源代碼分析,深度學習入門與進階,深度學習高級實踐,所有章節均附有源程序,所有實驗讀者均可重現,具有高度的可操作性和實用性。通過學習本書,研究人員、深度學習愛好者,能夠在3 個月內,係統掌握深度學習相關的理論和技術。

目 錄

深度學習基礎篇

第1 章 緒論 ·································································································· 2

1.1 引言 ······································································································· 2

1.1.1 Google 的深度學習成果 ···························································· 2

1.1.2 Microsoft 的深度學習成果························································· 3

1.1.3 國內公司的深度學習成果 ························································· 3

1.2 深度學習技術的發展曆程 ···································································· 4

1.3 深度學習的應用領域 ············································································ 6

1.3.1 圖像識彆領域 ············································································· 6

1.3.2 語音識彆領域 ············································································· 6

1.3.3 自然語言理解領域 ····································································· 7

1.4 如何開展深度學習的研究和應用開發 ················································· 7

本章參考文獻 ······························································································ 11

第2 章 國內外深度學習技術研發現狀及其産業化趨勢 ······························· 13

2.1 Google 在深度學習領域的研發現狀 ·················································· 13

2.1.1 深度學習在Google 的應用 ······················································ 13

2.1.2 Google 的TensorFlow 深度學習平颱 ······································ 14

2.1.3 Google 的深度學習芯片TPU ·················································· 15

2.2 Facebook 在深度學習領域的研發現狀 ·············································· 15

2.2.1 Torchnet ···················································································· 15

2.2.2 DeepText ··················································································· 16

2.3 百度在深度學習領域的研發現狀 ······················································· 17

2.3.1 光學字符識彆 ··········································································· 17

2.3.2 商品圖像搜索 ··········································································· 17

2.3.3 在綫廣告 ·················································································· 18

2.3.4 以圖搜圖 ·················································································· 18

2.3.5 語音識彆 ·················································································· 18

2.3.6 百度開源深度學習平颱MXNet 及其改進的深度語音識彆係統Warp-CTC ····· 19

2.4 阿裏巴巴在深度學習領域的研發現狀 ··············································· 19

2.4.1 拍立淘 ······················································································ 19

2.4.2 阿裏小蜜——智能客服Messenger ········································· 20

2.5 京東在深度學習領域的研發現狀 ······················································· 20

2.6 騰訊在深度學習領域的研發現狀 ······················································· 21

2.7 科創型公司(基於深度學習的人臉識彆係統) ······························· 22

2.8 深度學習的硬件支撐——NVIDIA GPU ············································ 23

本章參考文獻 ······························································································ 24

深度學習理論篇

第3 章 神經網絡 ························································································· 30

3.1 神經元的概念 ······················································································ 30

3.2 神經網絡 ····························································································· 31

3.2.1 後嚮傳播算法 ··········································································· 32

3.2.2 後嚮傳播算法推導 ··································································· 33

3.3 神經網絡算法示例 ·············································································· 36

本章參考文獻 ······························································································ 38

第4 章 捲積神經網絡 ················································································· 39

4.1 捲積神經網絡特性 ················································································ 39

4.1.1 局部連接 ·················································································· 40

4.1.2 權值共享 ·················································································· 41

4.1.3 空間相關下采樣 ······································································· 42

4.2 捲積神經網絡操作 ·············································································· 42

4.2.1 捲積操作 ·················································································· 42

4.2.2 下采樣操作 ·············································································· 44

4.3 捲積神經網絡示例:LeNet-5 ····························································· 45

本章參考文獻 ······························································································ 48

深度學習工具篇

第5 章 深度學習工具Caffe ········································································ 50

5.1 Caffe 的安裝 ························································································ 50

5.1.1 安裝依賴包 ·············································································· 51

5.1.2 CUDA 安裝 ·············································································· 51

5.1.3 MATLAB 和Python 安裝 ························································ 54

5.1.4 OpenCV 安裝(可選) ···························································· 59

5.1.5 Intel MKL 或者BLAS 安裝 ····················································· 59

5.1.6 Caffe 編譯和測試 ····································································· 59

5.1.7 Caffe 安裝問題分析 ································································· 62

5.2 Caffe 框架與源代碼解析 ···································································· 63

5.2.1 數據層解析 ·············································································· 63

5.2.2 網絡層解析 ·············································································· 74

5.2.3 網絡結構解析 ··········································································· 92

5.2.4 網絡求解解析 ········································································· 104

本章參考文獻 ···························································································· 109

第6 章 深度學習工具Pylearn2 ································································ 110

6.1 Pylearn2 的安裝 ·················································································· 110

6.1.1 相關依賴安裝 ·········································································· 110

6.1.2 安裝Pylearn2 ·········································································· 112

6.2 Pylearn2 的使用 ·················································································· 112

本章參考文獻 ····························································································· 116

深度學習實踐篇(入門與進階)

第7 章 基於深度學習的手寫數字識彆 ······················································ 118

7.1 數據介紹 ···························································································· 118

7.1.1 MNIST 數據集 ········································································ 118

7.1.2 提取MNIST 數據集圖片 ······················································· 120

7.2 手寫字體識彆流程 ············································································ 121

7.2.1 模型介紹 ················································································ 121

7.2.2 操作流程 ················································································ 126

7.3 實驗結果分析 ···················································································· 127

本章參考文獻 ···························································································· 128

第8 章 基於深度學習的圖像識彆 ····························································· 129

8.1 數據來源 ··························································································· 129

8.1.1 Cifar10 數據集介紹 ································································ 129

8.1.2 Cifar10 數據集格式 ································································ 129

8.2 Cifar10 識彆流程 ··············································································· 130

8.2.1 模型介紹 ················································································ 130

8.2.2 操作流程 ················································································ 136

8.3 實驗結果分析 ······················································································ 139

本章參考文獻 ···························································································· 140

第9 章 基於深度學習的物體圖像識彆 ······················································ 141

9.1 數據來源 ··························································································· 141

9.1.1 Caltech101 數據集 ·································································· 141

9.1.2 Caltech101 數據集處理 ·························································· 142

9.2 物體圖像識彆流程 ············································································ 143

9.2.1 模型介紹 ················································································ 143

9.2.2 操作流程 ················································································ 144

9.3 實驗結果分析 ···················································································· 150

本章參考文獻 ···························································································· 151

第10 章 基於深度學習的人臉識彆 ··························································· 152

10.1 數據來源 ························································································· 152

10.1.1 AT&T Facedatabase 數據庫 ·················································· 152

10.1.2 數據庫處理 ··········································································· 152

10.2 人臉識彆流程 ·················································································· 154

10.2.1 模型介紹 ·············································································· 154

10.2.2 操作流程 ·············································································· 155

10.3 實驗結果分析 ·················································································· 159

本章參考文獻 ···························································································· 160

深度學習實踐篇(高級應用)

第11 章 基於深度學習的人臉識彆——DeepID 算法 ································ 162

11.1 問題定義與數據來源 ······································································ 162

11.2 算法原理 ·························································································· 163

11.2.1 數據預處理 ··········································································· 163

11.2.2 模型訓練策略 ······································································· 164

11.2.3 算法驗證和結果評估 ··························································· 164

11.3 人臉識彆步驟 ·················

。。。。


人工智能的浪潮席捲而來,深度學習與自然語言處理(NLP)已成為驅動這場變革的核心技術。您是否渴望深入理解這些前沿領域的奧秘,並將其應用於實際的開發與研究中?這套精心打造的圖書組閤,正是為您量身定製的知識盛宴。它將帶您從NLP的基礎概念齣發,逐步深入到漢語的獨特挑戰與解決方案,最終抵達深度學習的廣闊天地,掌握從理論到實踐的全方位能力。 第一捲:NLTK基礎教程 在當今數據驅動的世界裏,理解和處理文本信息的能力至關重要。自然語言處理(NLP)正是這樣一門連接人類語言與計算機世界的橋梁。本教程將帶領您踏入NLTK(Natural Language Toolkit)的奇妙世界,這是一個強大而靈活的Python庫,為NLP的學習和實踐提供瞭豐富的功能。 從零開始,構建堅實基礎: 如果您是NLP的初學者,無需擔憂。本教程將從最基礎的概念講起,循序漸進地引導您掌握NLP的核心要領。我們將首先介紹什麼是自然語言處理,以及它在現實世界中的廣泛應用,從智能助手、文本翻譯到情感分析,您將領略NLP的強大魅力。 NLTK的安裝與配置: 工欲善其事,必先利其器。我們將詳細指導您如何輕鬆安裝NLTK庫,並配置好所需的語料庫和模型,確保您的開發環境無懈可擊。 文本處理的基石: 分詞(Tokenization): 學習如何將連續的文本切分成有意義的單元(詞語、標點符號等),這是NLP任務的第一步。您將掌握多種分詞方法,理解不同方法的優劣。 詞形還原(Lemmatization)與詞乾提取(Stemming): 瞭解如何將單詞還原到其基本形式,消除詞語的形態變化,從而統一處理。我們將區分這兩個概念,並介紹常用的算法。 去除停用詞(Stop Word Removal): 學習如何識彆並移除那些對文本含義影響不大的常見詞語(如“的”、“是”、“在”等),以提高處理效率和模型性能。 詞性標注(Part-of-Speech Tagging): 掌握如何為文本中的每個詞語分配其詞性(名詞、動詞、形容詞等),這是理解句子結構和語義的關鍵。 文本的結構與分析: N-grams: 學習如何構建詞語序列,如bigrams(兩個詞的組閤)和trigrams(三個詞的組閤),從而捕捉詞語之間的局部依賴關係,這在語言建模和文本生成中至關重要。 句法分析(Parsing): 深入瞭解如何分析句子的語法結構,構建句法樹,從而理解句子中詞語之間的層級關係。我們將介紹句法分析的不同方法及其應用。 命名實體識彆(Named Entity Recognition, NER): 學習如何識彆文本中的特定實體,如人名、地名、組織機構名等,這對於信息提取和知識圖譜構建至關重要。 文本的語義理解: 詞匯語義學(Lexical Semantics): 探索詞語之間的關係,如同義詞、反義詞、上位詞、下位詞等,理解詞匯的豐富內涵。 語篇分析(Discourse Analysis): 瞭解如何分析句子之間的關係,理解文本的整體連貫性和意義,這對於文本摘要和問答係統非常重要。 實踐與應用: 文本分類: 學習如何構建模型,根據文本內容將其劃分到不同的預定義類彆,例如垃圾郵件檢測、新聞分類等。 情感分析(Sentiment Analysis): 掌握如何分析文本中錶達的情感傾嚮(正麵、負麵、中性),這在社交媒體分析、用戶評論分析中具有重要價值。 文本生成: 探索如何利用學習到的語言模型生成新的文本,例如創作詩歌、寫新聞稿等。 通過本教程的學習,您將能夠熟練運用NLTK進行各種NLP任務,為後續更深入的學習打下堅實的基礎。 第二捲:NLP漢語自然語言處理原理 中文作為世界上使用人口最多的語言之一,其獨特的語言特性為自然語言處理帶來瞭諸多挑戰。本捲將聚焦漢語,深入剖析漢語NLP的原理與方法,助您剋服語言障礙,駕馭中文文本。 漢語的獨特性與挑戰: 分詞的難題: 漢語不像英文那樣有天然的空格分隔詞語,如何準確地將連續的漢字切分成詞語,是漢語NLP的首要難題。我們將深入探討基於詞典、基於統計模型(如隱馬爾可夫模型 HMM、條件隨機場 CRF)以及基於深度學習的分詞方法。 詞語的歧義性: 漢語中存在大量的同音字、多義詞,如何根據上下文消歧,是理解詞義的關鍵。我們將介紹詞義消歧的常用技術。 語法的多樣性: 漢語的語法結構相對靈活,句子的語序有時並不嚴格,這給語法分析帶來瞭挑戰。我們將探討漢語特有的語法現象及其分析方法。 低資源語言的睏境: 相較於英語,高質量的中文語料庫在某些特定領域可能相對稀缺,如何在低資源環境下進行有效的NLP處理,也將是本捲探討的重要內容。 漢語NLP的核心技術: 先進的分詞技術: 詳細解析當前主流的漢語分詞算法,包括基於字的模型、基於詞的模型以及混閤模型,並介紹如何利用大規模語料庫進行訓練與優化。 詞性標注與句法分析: 深入探討針對漢語的詞性標注模型和句法分析器,理解如何捕捉漢語特有的語法結構,例如名詞性短語、動詞性短語的識彆,以及依存句法分析。 漢語語義分析: 學習如何處理漢語中的詞義消歧、指代消解、情感分析等任務。我們將介紹基於詞嚮量(Word Embeddings)和上下文感知錶示(Contextual Embeddings)的方法,以及它們在漢語語義理解中的應用。 漢語的特殊文本處理: 探討古漢語、網絡用語、方言等特殊文本的處理方法,理解如何針對不同語料進行定製化處理。 信息抽取與問答係統: 學習如何從海量的中文文本中抽取結構化信息,構建知識圖譜,以及構建能夠理解並迴答中文問題的係統。 實際應用與案例分析: 中文搜索引擎優化: 理解分詞、詞性標注等基礎技術如何影響搜索引擎的檢索效率。 智能客服與對話係統: 學習如何構建能夠理解並響應用戶中文指令的智能對話係統。 中文新聞自動摘要: 探索如何從新聞報道中提取關鍵信息,生成精煉的摘要。 社交媒體情感分析: 分析用戶在微博、微信等平颱上的中文評論,洞察輿情趨勢。 通過對漢語NLP的深入研究,您將能夠掌握針對中文的特有技術,有效解決漢語帶來的挑戰,並在中文NLP領域大展拳腳。 第三捲:深度學習:原理與應用實踐 深度學習是當前人工智能領域最熱門、最具顛覆性的技術之一。本捲將為您揭示深度學習的強大原理,並帶領您通過豐富的實踐,掌握將其應用於NLP及其他領域的技能。 深度學習的基石: 神經網絡入門: 從最基本的神經元模型齣發,逐步構建多層感知機(MLP),理解信息在神經網絡中的傳播與學習過程。 激活函數: 瞭解Sigmoid、ReLU、Tanh等激活函數的作用,以及它們如何為神經網絡引入非綫性。 損失函數與優化器: 學習如何衡量模型的預測誤差(損失函數),以及如何通過梯度下降等優化算法來調整模型參數,最小化損失。 反嚮傳播算法: 深入理解反嚮傳播算法,這是訓練深度神經網絡的核心機製,它能夠高效地計算梯度並更新模型權重。 核心深度學習模型: 捲積神經網絡(CNN): 瞭解CNN在圖像處理領域的巨大成功,並學習其在文本處理中的應用,例如文本分類、情感分析。我們將重點講解捲積層、池化層以及它們如何提取文本的局部特徵。 循環神經網絡(RNN): 掌握RNN處理序列數據的能力,理解其在語言建模、機器翻譯、文本生成等NLP任務中的重要性。我們將詳細介紹RNN的結構、長短期記憶(LSTM)和門控循環單元(GRU)如何解決梯度消失問題。 Transformer模型: 學習當前最先進的Transformer模型,理解其基於注意力機製(Attention Mechanism)的強大能力,以及它如何徹底改變瞭NLP領域。我們將重點講解自注意力(Self-Attention)和多頭注意力(Multi-Head Attention)。 預訓練語言模型: 深入瞭解BERT、GPT等預訓練語言模型,理解它們如何在海量數據上學習通用的語言錶示,並能夠通過微調(Fine-tuning)快速適應各種下遊NLP任務。 深度學習在NLP中的應用: 文本生成: 利用RNN、Transformer等模型生成流暢、連貫的文本,例如寫新聞、寫故事、生成代碼。 機器翻譯: 構建Seq2Seq模型,實現高質量的機器翻譯。 問答係統: 利用深度學習模型理解問題,並在知識庫中找到答案。 文本摘要: 自動從長篇文章中提取核心信息,生成簡潔的摘要。 對話係統: 構建智能對話機器人,實現人機之間的自然交互。 實踐與進階: 深度學習框架: 熟練掌握TensorFlow、PyTorch等主流深度學習框架,學會如何構建、訓練和部署深度學習模型。 模型調優與評估: 學習如何通過超參數調整、正則化等技術來優化模型性能,並掌握各種評估指標來衡量模型的有效性。 遷移學習與領域適應: 學習如何利用預訓練模型進行遷移學習,將其知識遷移到新的領域,解決數據稀缺的問題。 模型的可解釋性: 探索如何理解深度學習模型的決策過程,提高模型的透明度和可靠性。 貫穿始終的理念: 這套圖書組閤並非簡單地羅列技術,而是注重知識體係的構建和解決問題的能力培養。從NLTK的實踐操作,到漢語NLP的原理深度,再到深度學習的理論與實踐,每一捲都承前啓後,相互呼應。您將不僅學會“是什麼”,更能理解“為什麼”,並最終掌握“如何做”。 麵嚮讀者: 計算機科學、人工智能、語言學等相關專業的學生: 為您的學習和研究提供堅實的理論基礎和實踐指導。 希望進入NLP或深度學習領域的開發者: 幫助您快速掌握核心技能,提升項目開發能力。 對人工智能和自然語言處理充滿好奇的愛好者: 開啓您探索智能世界的大門。 需要處理大量文本數據進行分析和挖掘的研究人員: 為您的研究工作提供強大的工具和方法。 總而言之,這套圖書組閤是您踏入自然語言處理和深度學習世界的理想起點,也是您在相關領域不斷深造的寶貴資源。它將激發您的學習興趣,提升您的專業技能,並助您在這場波瀾壯闊的人工智能浪潮中,抓住機遇,創造價值。

用戶評價

評分

這套書簡直是NLP新手入門的絕佳選擇!剛開始接觸自然語言處理,看到各種復雜的概念和算法,真是讓人頭大。但這本書從NLTK基礎講起,一步步引導,一點點消除瞭我的恐懼感。特彆是它對NLTK庫的講解,非常細緻,從安裝配置到各個模塊的使用,都講得很清楚。我尤其喜歡它通過實際例子來演示如何進行文本預處理,比如分詞、詞性標注、去除停用詞等等,這些基礎操作對於後續的學習至關重要,而這本書讓我能夠快速上手,並且理解其中的原理。

評分

這套書給我最大的驚喜在於它將NLTK基礎、NLP原理以及深度學習應用融為一體,形成瞭一個完整的知識體係。很多時候,我們在學習一個新領域時,常常會遇到知識點碎片化的問題,需要到處搜集資料。而這套書就很好的解決瞭這個問題,從最基礎的工具使用,到核心的原理剖析,再到前沿的深度學習應用,層層遞進,邏輯清晰。它讓我看到,原來NLTK這些基礎工具,是理解更復雜NLP模型的基礎,而深度學習又是實現更強大NLP功能的利器。這種係統性的學習方式,對於我這種希望全麵掌握NLP技術的學習者來說,效率非常高。

評分

我一直對深度學習在自然語言處理中的應用非常感興趣,但苦於找不到一本既有理論深度又不失實踐指導的書。這套書的《深度學習:原理與應用實踐》部分恰好滿足瞭我的需求。它係統地介紹瞭深度學習的基本原理,如神經網絡、反嚮傳播、捲積神經網絡、循環神經網絡等,並且用清晰的圖示和生動的語言解釋瞭這些概念。更重要的是,書中提供瞭大量的代碼示例,讓我能夠跟著書中的指導一步步實現各種模型,比如文本分類、機器翻譯、情感分析等等。這些實踐操作極大地加深瞭我對理論知識的理解,讓我不再是紙上談兵。

評分

對於想要深入理解NLP漢語處理原理的讀者來說,《NLP漢語自然語言處理原理》這一部分絕對是寶藏。它不僅僅停留在錶麵的工具使用,而是深入探討瞭漢語本身的復雜性以及如何通過各種算法來解決這些難題。從分詞的歧義性、詞性標注的挑戰,到句法分析、語義理解的各種模型,這本書都做瞭詳盡的闡述。作者在講解時,並沒有迴避其中的技術難點,反而通過深入淺齣的方式,將復雜的算法原理拆解開來,讓我這個非計算機專業背景的讀者也能有所領悟。

評分

我之前也讀過一些關於NLP的書籍,但很少有像這套書這樣,能夠將理論講解和實踐操作結閤得如此恰當。作者在講解算法原理時,會巧妙地穿插一些Python代碼示例,讓我們能夠立刻看到理論是如何轉化為實際應用的。特彆是《深度學習:原理與應用實踐》部分,作者並沒有簡單地羅列公式,而是通過圖解和代碼演示,讓我直觀地理解瞭模型的構建和訓練過程。這種“學以緻用”的學習方式,讓我覺得學習過程充滿瞭樂趣和成就感,也讓我對未來的NLP研究和開發充滿瞭信心。

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.coffeedeals.club All Rights Reserved. 靜流書站 版權所有