包邮 NLTK基础教程+NLP汉语自然语言处理原理+深度学习:原理与应用实践

包邮 NLTK基础教程+NLP汉语自然语言处理原理+深度学习:原理与应用实践 pdf epub mobi txt 电子书 下载 2025

图书标签:
  • NLTK
  • 自然语言处理
  • NLP
  • 汉语处理
  • 深度学习
  • 机器学习
  • Python
  • 教程
  • 书籍
  • 技术
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 蓝墨水图书专营店
出版社: 人民邮电出版社
ISBN:9787115452573
商品编码:13791776441

具体描述

3本 NLTK基础教程 用NLTK和Python库构建机器学习应用+NLP汉语自然语言处理原理+深度学习:原理与应用实践 9787115452573 9787121307652 9787121304132






于本书有任何问题,请联系: 

  • 书 号: 978-7-115-45257-3
  • 页 数: 172
  • 印刷方式: 黑白印刷
  • 开 本: 16开
  • 出版状态: 正在印刷
  • 原书名: 
  • 原书号: 978-1784396909

NLTK基础教程——用NLTK和Python库构建机器学习应用[预售]

  • 作者: 
  • 译者:  责编: 
  • 分类: 

【预计上市时间:05月23日】
NLTK 库是当前自然语言处理(NLP)领域·为流行、使用·为广泛的库之一, 同时Python语言也已逐渐成为主流的编程语言之一。
本书主要介绍如何通过NLTK库与一些Python库的结合从而实现复杂的NLP任务和机器学习应用。全书共分为10章。第1章对NLP进行了简单介绍。第2章、第3章和第4章主要介绍一些通用的预处理技术、专属于NLP领域的预处理技术以及命名实体识别技术等。第5章之后的内容侧重于介绍如何构建一些NLP应用,涉及文本分类、数据科学和数据处理、社交媒体挖掘和大规模文本挖掘等方面。
本书适合 NLP 和机器学习领域的爱好者、对文本处理感兴趣的读者、想要快速学习NLTK的资深Python程序员以及机器学习领域的研究人员阅读。

作 译 者:
出版时间:2017-01千 字 数:816
版    次:01-01页    数:544
印刷时间:开    本:16开
印    次:01-01装    帧:
I S B N :9787121307652 
重    印:新书换    版:
所属分类: >>  >> 
广告语:   
纸质书定价:¥98.

 

 

本书是一本研究汉语自然语言处理方面的基础性、综合性书籍,涉及NLP的语言理论、算法和工程实践的方方面面,内容繁杂。 本书包括NLP的语言理论部分、算法部分、案例部分,涉及汉语的发展历史、传统的句法理论、认知语言学理论。需要指出的是,本书是迄今为止,本系统介绍认知语言学和算法设计相结合的中文NLP书籍,并从认知语言学的视角重新认识和分析了NLP的句法和语义相结合的数据结构。这也是本书的创新之处。 本书适用于所有想学习NLP的技术人员,包括各大人工智能实验室、软件学院等专业机构。

目  录

第1章  中文语言的机器处理    1

1.1  历史回顾    2

1.1.1  从科幻到现实    2

1.1.2  早期的探索    3

1.1.3  规则派还是统计派    3

1.1.4  从机器学习到认知

计算    5

1.2  现代自然语言系统简介    6

1.2.1  NLP流程与开源框架    6

1.2.2  哈工大NLP平台及其

演示环境    9

1.2.3  Stanford NLP团队及其

演示环境    11

1.2.4  NLTK开发环境    13

1.3  整合中文分词模块    16

1.3.1  安装Ltp Python组件    17

1.3.2  使用Ltp 3.3进行中文

分词    18

1.3.3  使用结巴分词模块    20

1.4  整合词性标注模块    22

1.4.1  Ltp 3.3词性标注    23

1.4.2  安装StanfordNLP并

编写Python接口类    24

1.4.3  执行Stanford词性

标注    28

1.5  整合命名实体识别模块    29

1.5.1  Ltp 3.3命名实体识别    29

1.5.2  Stanford命名实体

识别    30

1.6  整合句法解析模块    32

1.6.1  Ltp 3.3句法依存树    33

1.6.2  Stanford Parser类    35

1.6.3  Stanford短语结构树    36

1.6.4  Stanford依存句法树    37

1.7  整合语义角色标注模块    38

1.8  结语    40

第2章  汉语语言学研究回顾    42

2.1  文字符号的起源    42

2.1.1  从记事谈起    43

2.1.2  古文字的形成    47

2.2  六书及其他    48

2.2.1  象形    48

2.2.2  指事    50

2.2.3  会意    51

2.2.4  形声    53

 

2.2.5  转注    54

2.2.6  假借    55

2.3  字形的流变    56

2.3.1  笔与墨的形成与变革    56

2.3.2  隶变的方式    58

2.3.3  汉字的符号化与结构    61

2.4  汉语的发展    67

2.4.1  完整语义的基本

形式——句子    68

2.4.2  语言的初始形态与

文言文    71

2.4.3  白话文与复音词    73

2.4.4  白话文与句法研究    78

2.5  三个平面中的语义研究    80

2.5.1  词汇与本体论    81

2.5.2  格语法及其框架    84

2.6  结语    86

第3章  词汇与分词技术    88

3.1  中文分词    89

3.1.1  什么是词与分词规范    90

3.1.2  两种分词标准    93

3.1.3  歧义、机械分词、语言

模型    94

3.1.4  词汇的构成与未登录

词    97

3.2  系统总体流程与词典结构    98

3.2.1  概述    98

3.2.2  中文分词流程    99

3.2.3  分词词典结构    103

3.2.4  命名实体的词典

结构    105

3.2.5  词典的存储结构    108

3.3  算法部分源码解析    111

3.3.1  系统配置    112

3.3.2  Main方法与例句    113

3.3.3  句子切分    113

3.3.4  分词流程    117

3.3.5  一元词网    118

3.3.6  二元词图    125

3.3.7  NShort算法原理    130

3.3.8  后处理规则集    136

3.3.9  命名实体识别    137

3.3.10  细分阶段与·短

路径    140

3.4  结语    142

第4章  NLP中的概率图模型    143

4.1  概率论回顾    143

4.1.1  多元概率论的几个

基本概念    144

4.1.2  贝叶斯与朴素贝叶斯

算法    146

4.1.3  文本分类    148

4.1.4  文本分类的实现    151

4.2  信息熵    154

4.2.1  信息量与信息熵    154

4.2.2  互信息、联合熵、

条件熵    156

4.2.3  交叉熵和KL散度    158

4.2.4  信息熵的NLP的

意义    159

4.3  NLP与概率图模型    160

4.3.1  概率图模型的几个

基本问题    161

4.3.2  产生式模型和判别式

模型    162

4.3.3  统计语言模型与NLP

算法设计    164

4.3.4  极大似然估计    167

4.4  隐马尔科夫模型简介    169

4.4.1  马尔科夫链    169

4.4.2  隐马尔科夫模型    170

4.4.3  HMMs的一个实例    171

4.4.4  Viterbi算法的实现    176

4.5  ·大熵模型    179

4.5.1  从词性标注谈起    179

4.5.2  特征和约束    181

4.5.3  ·大熵原理    183

4.5.4  公式推导    185

4.5.5  对偶问题的极大似然

估计    186

4.5.6  GIS实现    188

4.6  条件随机场模型    193

4.6.1  随机场    193

4.6.2  无向图的团(Clique)

与因子分解    194

4.6.3  线性链条件随机场    195

4.6.4  CRF的概率计算    198

4.6.5  CRF的参数学习    199

4.6.6  CRF预测标签    200

4.7  结语    201

第5章  词性、语块与命名实体

识别    202

5.1  汉语词性标注    203

5.1.1  汉语的词性    203

5.1.2  宾州树库的词性标注

规范    205

5.1.3  stanfordNLP标注

词性    210

5.1.4  训练模型文件    213

5.2  语义组块标注    219

5.2.1  语义组块的种类    220

5.2.2  细说NP    221

5.2.3  细说VP    223

5.2.4  其他语义块    227

5.2.5  语义块的抽取    229

5.2.6  CRF的使用    232

5.3  命名实体识别    240

5.3.1  命名实体    241

5.3.2  分词架构与专名

.............

深度学习:原理与应用实践  
 
丛书名 :
著    者:
作 译 者:
出版时间:2016-12千 字 数:259
版    次:01-01页    数:232
印刷时间:开    本:16开
印    次:01-01装    帧:
I S B N :9787121304132 
重    印:新书换    版:
所属分类: >>  >> 
广告语:   
纸质书定价:¥48

 

 

本书全面、系统地介绍深度学习相关的技术,包括人工神经网络,卷积神经网络,深度学习平台及源代码分析,深度学习入门与进阶,深度学习高级实践,所有章节均附有源程序,所有实验读者均可重现,具有高度的可操作性和实用性。通过学习本书,研究人员、深度学习爱好者,能够在3 个月内,系统掌握深度学习相关的理论和技术。

目 录

深度学习基础篇

第1 章 绪论 ·································································································· 2

1.1 引言 ······································································································· 2

1.1.1 Google 的深度学习成果 ···························································· 2

1.1.2 Microsoft 的深度学习成果························································· 3

1.1.3 国内公司的深度学习成果 ························································· 3

1.2 深度学习技术的发展历程 ···································································· 4

1.3 深度学习的应用领域 ············································································ 6

1.3.1 图像识别领域 ············································································· 6

1.3.2 语音识别领域 ············································································· 6

1.3.3 自然语言理解领域 ····································································· 7

1.4 如何开展深度学习的研究和应用开发 ················································· 7

本章参考文献 ······························································································ 11

第2 章 国内外深度学习技术研发现状及其产业化趋势 ······························· 13

2.1 Google 在深度学习领域的研发现状 ·················································· 13

2.1.1 深度学习在Google 的应用 ······················································ 13

2.1.2 Google 的TensorFlow 深度学习平台 ······································ 14

2.1.3 Google 的深度学习芯片TPU ·················································· 15

2.2 Facebook 在深度学习领域的研发现状 ·············································· 15

2.2.1 Torchnet ···················································································· 15

2.2.2 DeepText ··················································································· 16

2.3 百度在深度学习领域的研发现状 ······················································· 17

2.3.1 光学字符识别 ··········································································· 17

2.3.2 商品图像搜索 ··········································································· 17

2.3.3 在线广告 ·················································································· 18

2.3.4 以图搜图 ·················································································· 18

2.3.5 语音识别 ·················································································· 18

2.3.6 百度开源深度学习平台MXNet 及其改进的深度语音识别系统Warp-CTC ····· 19

2.4 阿里巴巴在深度学习领域的研发现状 ··············································· 19

2.4.1 拍立淘 ······················································································ 19

2.4.2 阿里小蜜——智能客服Messenger ········································· 20

2.5 京东在深度学习领域的研发现状 ······················································· 20

2.6 腾讯在深度学习领域的研发现状 ······················································· 21

2.7 科创型公司(基于深度学习的人脸识别系统) ······························· 22

2.8 深度学习的硬件支撑——NVIDIA GPU ············································ 23

本章参考文献 ······························································································ 24

深度学习理论篇

第3 章 神经网络 ························································································· 30

3.1 神经元的概念 ······················································································ 30

3.2 神经网络 ····························································································· 31

3.2.1 后向传播算法 ··········································································· 32

3.2.2 后向传播算法推导 ··································································· 33

3.3 神经网络算法示例 ·············································································· 36

本章参考文献 ······························································································ 38

第4 章 卷积神经网络 ················································································· 39

4.1 卷积神经网络特性 ················································································ 39

4.1.1 局部连接 ·················································································· 40

4.1.2 权值共享 ·················································································· 41

4.1.3 空间相关下采样 ······································································· 42

4.2 卷积神经网络操作 ·············································································· 42

4.2.1 卷积操作 ·················································································· 42

4.2.2 下采样操作 ·············································································· 44

4.3 卷积神经网络示例:LeNet-5 ····························································· 45

本章参考文献 ······························································································ 48

深度学习工具篇

第5 章 深度学习工具Caffe ········································································ 50

5.1 Caffe 的安装 ························································································ 50

5.1.1 安装依赖包 ·············································································· 51

5.1.2 CUDA 安装 ·············································································· 51

5.1.3 MATLAB 和Python 安装 ························································ 54

5.1.4 OpenCV 安装(可选) ···························································· 59

5.1.5 Intel MKL 或者BLAS 安装 ····················································· 59

5.1.6 Caffe 编译和测试 ····································································· 59

5.1.7 Caffe 安装问题分析 ································································· 62

5.2 Caffe 框架与源代码解析 ···································································· 63

5.2.1 数据层解析 ·············································································· 63

5.2.2 网络层解析 ·············································································· 74

5.2.3 网络结构解析 ··········································································· 92

5.2.4 网络求解解析 ········································································· 104

本章参考文献 ···························································································· 109

第6 章 深度学习工具Pylearn2 ································································ 110

6.1 Pylearn2 的安装 ·················································································· 110

6.1.1 相关依赖安装 ·········································································· 110

6.1.2 安装Pylearn2 ·········································································· 112

6.2 Pylearn2 的使用 ·················································································· 112

本章参考文献 ····························································································· 116

深度学习实践篇(入门与进阶)

第7 章 基于深度学习的手写数字识别 ······················································ 118

7.1 数据介绍 ···························································································· 118

7.1.1 MNIST 数据集 ········································································ 118

7.1.2 提取MNIST 数据集图片 ······················································· 120

7.2 手写字体识别流程 ············································································ 121

7.2.1 模型介绍 ················································································ 121

7.2.2 操作流程 ················································································ 126

7.3 实验结果分析 ···················································································· 127

本章参考文献 ···························································································· 128

第8 章 基于深度学习的图像识别 ····························································· 129

8.1 数据来源 ··························································································· 129

8.1.1 Cifar10 数据集介绍 ································································ 129

8.1.2 Cifar10 数据集格式 ································································ 129

8.2 Cifar10 识别流程 ··············································································· 130

8.2.1 模型介绍 ················································································ 130

8.2.2 操作流程 ················································································ 136

8.3 实验结果分析 ······················································································ 139

本章参考文献 ···························································································· 140

第9 章 基于深度学习的物体图像识别 ······················································ 141

9.1 数据来源 ··························································································· 141

9.1.1 Caltech101 数据集 ·································································· 141

9.1.2 Caltech101 数据集处理 ·························································· 142

9.2 物体图像识别流程 ············································································ 143

9.2.1 模型介绍 ················································································ 143

9.2.2 操作流程 ················································································ 144

9.3 实验结果分析 ···················································································· 150

本章参考文献 ···························································································· 151

第10 章 基于深度学习的人脸识别 ··························································· 152

10.1 数据来源 ························································································· 152

10.1.1 AT&T Facedatabase 数据库 ·················································· 152

10.1.2 数据库处理 ··········································································· 152

10.2 人脸识别流程 ·················································································· 154

10.2.1 模型介绍 ·············································································· 154

10.2.2 操作流程 ·············································································· 155

10.3 实验结果分析 ·················································································· 159

本章参考文献 ···························································································· 160

深度学习实践篇(高级应用)

第11 章 基于深度学习的人脸识别——DeepID 算法 ································ 162

11.1 问题定义与数据来源 ······································································ 162

11.2 算法原理 ·························································································· 163

11.2.1 数据预处理 ··········································································· 163

11.2.2 模型训练策略 ······································································· 164

11.2.3 算法验证和结果评估 ··························································· 164

11.3 人脸识别步骤 ·················

。。。。


人工智能的浪潮席卷而来,深度学习与自然语言处理(NLP)已成为驱动这场变革的核心技术。您是否渴望深入理解这些前沿领域的奥秘,并将其应用于实际的开发与研究中?这套精心打造的图书组合,正是为您量身定制的知识盛宴。它将带您从NLP的基础概念出发,逐步深入到汉语的独特挑战与解决方案,最终抵达深度学习的广阔天地,掌握从理论到实践的全方位能力。 第一卷:NLTK基础教程 在当今数据驱动的世界里,理解和处理文本信息的能力至关重要。自然语言处理(NLP)正是这样一门连接人类语言与计算机世界的桥梁。本教程将带领您踏入NLTK(Natural Language Toolkit)的奇妙世界,这是一个强大而灵活的Python库,为NLP的学习和实践提供了丰富的功能。 从零开始,构建坚实基础: 如果您是NLP的初学者,无需担忧。本教程将从最基础的概念讲起,循序渐进地引导您掌握NLP的核心要领。我们将首先介绍什么是自然语言处理,以及它在现实世界中的广泛应用,从智能助手、文本翻译到情感分析,您将领略NLP的强大魅力。 NLTK的安装与配置: 工欲善其事,必先利其器。我们将详细指导您如何轻松安装NLTK库,并配置好所需的语料库和模型,确保您的开发环境无懈可击。 文本处理的基石: 分词(Tokenization): 学习如何将连续的文本切分成有意义的单元(词语、标点符号等),这是NLP任务的第一步。您将掌握多种分词方法,理解不同方法的优劣。 词形还原(Lemmatization)与词干提取(Stemming): 了解如何将单词还原到其基本形式,消除词语的形态变化,从而统一处理。我们将区分这两个概念,并介绍常用的算法。 去除停用词(Stop Word Removal): 学习如何识别并移除那些对文本含义影响不大的常见词语(如“的”、“是”、“在”等),以提高处理效率和模型性能。 词性标注(Part-of-Speech Tagging): 掌握如何为文本中的每个词语分配其词性(名词、动词、形容词等),这是理解句子结构和语义的关键。 文本的结构与分析: N-grams: 学习如何构建词语序列,如bigrams(两个词的组合)和trigrams(三个词的组合),从而捕捉词语之间的局部依赖关系,这在语言建模和文本生成中至关重要。 句法分析(Parsing): 深入了解如何分析句子的语法结构,构建句法树,从而理解句子中词语之间的层级关系。我们将介绍句法分析的不同方法及其应用。 命名实体识别(Named Entity Recognition, NER): 学习如何识别文本中的特定实体,如人名、地名、组织机构名等,这对于信息提取和知识图谱构建至关重要。 文本的语义理解: 词汇语义学(Lexical Semantics): 探索词语之间的关系,如同义词、反义词、上位词、下位词等,理解词汇的丰富内涵。 语篇分析(Discourse Analysis): 了解如何分析句子之间的关系,理解文本的整体连贯性和意义,这对于文本摘要和问答系统非常重要。 实践与应用: 文本分类: 学习如何构建模型,根据文本内容将其划分到不同的预定义类别,例如垃圾邮件检测、新闻分类等。 情感分析(Sentiment Analysis): 掌握如何分析文本中表达的情感倾向(正面、负面、中性),这在社交媒体分析、用户评论分析中具有重要价值。 文本生成: 探索如何利用学习到的语言模型生成新的文本,例如创作诗歌、写新闻稿等。 通过本教程的学习,您将能够熟练运用NLTK进行各种NLP任务,为后续更深入的学习打下坚实的基础。 第二卷:NLP汉语自然语言处理原理 中文作为世界上使用人口最多的语言之一,其独特的语言特性为自然语言处理带来了诸多挑战。本卷将聚焦汉语,深入剖析汉语NLP的原理与方法,助您克服语言障碍,驾驭中文文本。 汉语的独特性与挑战: 分词的难题: 汉语不像英文那样有天然的空格分隔词语,如何准确地将连续的汉字切分成词语,是汉语NLP的首要难题。我们将深入探讨基于词典、基于统计模型(如隐马尔可夫模型 HMM、条件随机场 CRF)以及基于深度学习的分词方法。 词语的歧义性: 汉语中存在大量的同音字、多义词,如何根据上下文消歧,是理解词义的关键。我们将介绍词义消歧的常用技术。 语法的多样性: 汉语的语法结构相对灵活,句子的语序有时并不严格,这给语法分析带来了挑战。我们将探讨汉语特有的语法现象及其分析方法。 低资源语言的困境: 相较于英语,高质量的中文语料库在某些特定领域可能相对稀缺,如何在低资源环境下进行有效的NLP处理,也将是本卷探讨的重要内容。 汉语NLP的核心技术: 先进的分词技术: 详细解析当前主流的汉语分词算法,包括基于字的模型、基于词的模型以及混合模型,并介绍如何利用大规模语料库进行训练与优化。 词性标注与句法分析: 深入探讨针对汉语的词性标注模型和句法分析器,理解如何捕捉汉语特有的语法结构,例如名词性短语、动词性短语的识别,以及依存句法分析。 汉语语义分析: 学习如何处理汉语中的词义消歧、指代消解、情感分析等任务。我们将介绍基于词向量(Word Embeddings)和上下文感知表示(Contextual Embeddings)的方法,以及它们在汉语语义理解中的应用。 汉语的特殊文本处理: 探讨古汉语、网络用语、方言等特殊文本的处理方法,理解如何针对不同语料进行定制化处理。 信息抽取与问答系统: 学习如何从海量的中文文本中抽取结构化信息,构建知识图谱,以及构建能够理解并回答中文问题的系统。 实际应用与案例分析: 中文搜索引擎优化: 理解分词、词性标注等基础技术如何影响搜索引擎的检索效率。 智能客服与对话系统: 学习如何构建能够理解并响应用户中文指令的智能对话系统。 中文新闻自动摘要: 探索如何从新闻报道中提取关键信息,生成精炼的摘要。 社交媒体情感分析: 分析用户在微博、微信等平台上的中文评论,洞察舆情趋势。 通过对汉语NLP的深入研究,您将能够掌握针对中文的特有技术,有效解决汉语带来的挑战,并在中文NLP领域大展拳脚。 第三卷:深度学习:原理与应用实践 深度学习是当前人工智能领域最热门、最具颠覆性的技术之一。本卷将为您揭示深度学习的强大原理,并带领您通过丰富的实践,掌握将其应用于NLP及其他领域的技能。 深度学习的基石: 神经网络入门: 从最基本的神经元模型出发,逐步构建多层感知机(MLP),理解信息在神经网络中的传播与学习过程。 激活函数: 了解Sigmoid、ReLU、Tanh等激活函数的作用,以及它们如何为神经网络引入非线性。 损失函数与优化器: 学习如何衡量模型的预测误差(损失函数),以及如何通过梯度下降等优化算法来调整模型参数,最小化损失。 反向传播算法: 深入理解反向传播算法,这是训练深度神经网络的核心机制,它能够高效地计算梯度并更新模型权重。 核心深度学习模型: 卷积神经网络(CNN): 了解CNN在图像处理领域的巨大成功,并学习其在文本处理中的应用,例如文本分类、情感分析。我们将重点讲解卷积层、池化层以及它们如何提取文本的局部特征。 循环神经网络(RNN): 掌握RNN处理序列数据的能力,理解其在语言建模、机器翻译、文本生成等NLP任务中的重要性。我们将详细介绍RNN的结构、长短期记忆(LSTM)和门控循环单元(GRU)如何解决梯度消失问题。 Transformer模型: 学习当前最先进的Transformer模型,理解其基于注意力机制(Attention Mechanism)的强大能力,以及它如何彻底改变了NLP领域。我们将重点讲解自注意力(Self-Attention)和多头注意力(Multi-Head Attention)。 预训练语言模型: 深入了解BERT、GPT等预训练语言模型,理解它们如何在海量数据上学习通用的语言表示,并能够通过微调(Fine-tuning)快速适应各种下游NLP任务。 深度学习在NLP中的应用: 文本生成: 利用RNN、Transformer等模型生成流畅、连贯的文本,例如写新闻、写故事、生成代码。 机器翻译: 构建Seq2Seq模型,实现高质量的机器翻译。 问答系统: 利用深度学习模型理解问题,并在知识库中找到答案。 文本摘要: 自动从长篇文章中提取核心信息,生成简洁的摘要。 对话系统: 构建智能对话机器人,实现人机之间的自然交互。 实践与进阶: 深度学习框架: 熟练掌握TensorFlow、PyTorch等主流深度学习框架,学会如何构建、训练和部署深度学习模型。 模型调优与评估: 学习如何通过超参数调整、正则化等技术来优化模型性能,并掌握各种评估指标来衡量模型的有效性。 迁移学习与领域适应: 学习如何利用预训练模型进行迁移学习,将其知识迁移到新的领域,解决数据稀缺的问题。 模型的可解释性: 探索如何理解深度学习模型的决策过程,提高模型的透明度和可靠性。 贯穿始终的理念: 这套图书组合并非简单地罗列技术,而是注重知识体系的构建和解决问题的能力培养。从NLTK的实践操作,到汉语NLP的原理深度,再到深度学习的理论与实践,每一卷都承前启后,相互呼应。您将不仅学会“是什么”,更能理解“为什么”,并最终掌握“如何做”。 面向读者: 计算机科学、人工智能、语言学等相关专业的学生: 为您的学习和研究提供坚实的理论基础和实践指导。 希望进入NLP或深度学习领域的开发者: 帮助您快速掌握核心技能,提升项目开发能力。 对人工智能和自然语言处理充满好奇的爱好者: 开启您探索智能世界的大门。 需要处理大量文本数据进行分析和挖掘的研究人员: 为您的研究工作提供强大的工具和方法。 总而言之,这套图书组合是您踏入自然语言处理和深度学习世界的理想起点,也是您在相关领域不断深造的宝贵资源。它将激发您的学习兴趣,提升您的专业技能,并助您在这场波澜壮阔的人工智能浪潮中,抓住机遇,创造价值。

用户评价

评分

对于想要深入理解NLP汉语处理原理的读者来说,《NLP汉语自然语言处理原理》这一部分绝对是宝藏。它不仅仅停留在表面的工具使用,而是深入探讨了汉语本身的复杂性以及如何通过各种算法来解决这些难题。从分词的歧义性、词性标注的挑战,到句法分析、语义理解的各种模型,这本书都做了详尽的阐述。作者在讲解时,并没有回避其中的技术难点,反而通过深入浅出的方式,将复杂的算法原理拆解开来,让我这个非计算机专业背景的读者也能有所领悟。

评分

我之前也读过一些关于NLP的书籍,但很少有像这套书这样,能够将理论讲解和实践操作结合得如此恰当。作者在讲解算法原理时,会巧妙地穿插一些Python代码示例,让我们能够立刻看到理论是如何转化为实际应用的。特别是《深度学习:原理与应用实践》部分,作者并没有简单地罗列公式,而是通过图解和代码演示,让我直观地理解了模型的构建和训练过程。这种“学以致用”的学习方式,让我觉得学习过程充满了乐趣和成就感,也让我对未来的NLP研究和开发充满了信心。

评分

这套书给我最大的惊喜在于它将NLTK基础、NLP原理以及深度学习应用融为一体,形成了一个完整的知识体系。很多时候,我们在学习一个新领域时,常常会遇到知识点碎片化的问题,需要到处搜集资料。而这套书就很好的解决了这个问题,从最基础的工具使用,到核心的原理剖析,再到前沿的深度学习应用,层层递进,逻辑清晰。它让我看到,原来NLTK这些基础工具,是理解更复杂NLP模型的基础,而深度学习又是实现更强大NLP功能的利器。这种系统性的学习方式,对于我这种希望全面掌握NLP技术的学习者来说,效率非常高。

评分

我一直对深度学习在自然语言处理中的应用非常感兴趣,但苦于找不到一本既有理论深度又不失实践指导的书。这套书的《深度学习:原理与应用实践》部分恰好满足了我的需求。它系统地介绍了深度学习的基本原理,如神经网络、反向传播、卷积神经网络、循环神经网络等,并且用清晰的图示和生动的语言解释了这些概念。更重要的是,书中提供了大量的代码示例,让我能够跟着书中的指导一步步实现各种模型,比如文本分类、机器翻译、情感分析等等。这些实践操作极大地加深了我对理论知识的理解,让我不再是纸上谈兵。

评分

这套书简直是NLP新手入门的绝佳选择!刚开始接触自然语言处理,看到各种复杂的概念和算法,真是让人头大。但这本书从NLTK基础讲起,一步步引导,一点点消除了我的恐惧感。特别是它对NLTK库的讲解,非常细致,从安装配置到各个模块的使用,都讲得很清楚。我尤其喜欢它通过实际例子来演示如何进行文本预处理,比如分词、词性标注、去除停用词等等,这些基础操作对于后续的学习至关重要,而这本书让我能够快速上手,并且理解其中的原理。

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.coffeedeals.club All Rights Reserved. 静流书站 版权所有