具體描述
編輯推薦
Journalist Patterson proves Mark Twain's point that "truth is stranger than fiction." Patterson's recounting of the events leading up to and including the global financial meltdown in 2007 and 2008 features the Quants, a new breed of investor, a corps of elite math geniuses who exchanged the hunches of risk-taking traders for advanced mathematical tools, including complicated algorithms and supercomputers. These new titans of Wall Street set off a chain of events for a financial catastrophe beginning in August 2007, which nearly destroyed the world's financial markets. This is primarily the story of four main "characters"—Morgan Stanley's Peter Muller, Citadel hedge fund's Ken Griffin, Cliff Asness of AQR hedge fund, and Boaz Weinstein of Deutsche Bank. These and other number-crunching wizards amassed multibillion-dollar war chests and then the numbers turned against them. Their ascendancy to the heights and then extraordinary fall to near extinction is a remarkable story, as is the possibility that they all will rise from the ashes. This is a must-read, excellent book. 內容簡介
"Beware of geeks bearing formulas."--Warren Buffett
In March of 2006, the world's richest men sipped champagne in an opulent New York hotel. They were preparing to compete in a poker tournament with million-dollar stakes, but those numbers meant nothing to them. They were accustomed to risking billions.
At the card table that night was Peter Muller, an eccentric, whip-smart whiz kid who'd studied theoretical mathematics at Princeton and now managed a fabulously successful hedge fund called PDT…when he wasn't playing his keyboard for morning commuters on the New York subway. With him was Ken Griffin, who as an undergraduate trading convertible bonds out of his Harvard dorm room had outsmarted the Wall Street pros and made money in one of the worst bear markets of all time. Now he was the tough-as-nails head of Citadel Investment Group, one of the most powerful money machines on earth. There too were Cliff Asness, the sharp-tongued, mercurial founder of the hedge fund AQR, a man as famous for his computer-smashing rages as for his brilliance, and Boaz Weinstein, chess life-master and king of the credit default swap, who while juggling $30 billion worth of positions for Deutsche Bank found time for frequent visits to Las Vegas with the famed MIT card-counting team.
On that night in 2006, these four men and their cohorts were the new kings of Wall Street. Muller, Griffin, Asness, and Weinstein were among the best and brightest of a new breed, the quants. Over the prior twenty years, this species of math whiz --technocrats who make billions not with gut calls or fundamental analysis but with formulas and high-speed computers-- had usurped the testosterone-fueled, kill-or-be-killed risk-takers who'd long been the alpha males the world's largest casino. The quants believed that a dizzying, indecipherable-to-mere-mortals cocktail of differential calculus, quantum physics, and advanced geometry held the key to reaping riches from the financial markets. And they helped create a digitized money-trading machine that could shift billions around the globe with the click of a mouse.
Few realized that night, though, that in creating this unprecedented machine, men like Muller, Griffin, Asness and Weinstein had sowed the seeds for history's greatest financial disaster.
Drawing on unprecedented access to these four number-crunching titans, The Quants tells the inside story of what they thought and felt in the days and weeks when they helplessly watched much of their net worth vaporize – and wondered just how their mind-bending formulas and genius-level IQ's had led them so wrong, so fast. Had their years of success been dumb luck, fool's gold, a good run that could come to an end on any given day? What if The Truth they sought -- the secret of the markets -- wasn't knowable? Worse, what if there wasn't any Truth?
In The Quants, Scott Patterson tells the story not just of these men, but of Jim Simons, the reclusive founder of the most successful hedge fund in history; Aaron Brown, the quant who used his math skills to humiliate Wall Street's old guard at their trademark game of Liar's Poker, and years later found himself with a front-row seat to the rapid emergence of mortgage-backed securities; and gadflies and dissenters such as Paul Wilmott, Nassim Taleb, and Benoit Mandelbrot.
With the immediacy of today's NASDAQ close and the timeless power of a Greek tragedy, The Quants is at once a masterpiece of explanatory journalism, a gripping tale of ambition and hubris…and an ominous warning about Wall Street's future. 作者簡介
Scott Patterson is a staff reporter at The Wall Street Journal covering the latest cutting-edge technological advances on Wall Street. This is his first book. 精彩書評
"Valuable…makes [the quants'] secretive world comprehensible…the story radiates with hubris, high stakes and expensive toys."
——Bloomberg.com
好的,這是一本關於金融量化分析的圖書簡介,內容詳實,不涉及您提到的特定書籍: 書名: 《算法之巔:金融市場中的數字革命與未來圖景》 作者: [此處留空,或使用一個虛構的學者/從業者名稱] 齣版社: [此處留空,或使用一個虛構的齣版社名稱] 書籍簡介: 在二十一世紀的金融世界中,一場靜悄悄的革命正在重塑著市場的每一個角落。這場革命的核心驅動力,不再是傳統的基本麵分析或直覺判斷,而是數據、模型和高速運算能力——即“量化”。《算法之巔:金融市場中的數字革命與未來圖景》深入剖析瞭這一範式的轉變,為讀者描繪瞭一幅從早期統計套利到現代深度學習驅動交易的宏大曆史畫捲。 本書並非一本簡單的入門指南,它是一部麵嚮對金融工程、計算科學與現代投資管理交叉領域有深度興趣的專業人士、高級學生和嚴肅投資者的深度報告。我們旨在探討的,是如何從純粹的數學和計算機科學的視角,理解、構建並駕馭現代金融市場的復雜性。 第一部分:量化思想的基石——從噪聲到信號 本書的開篇追溯瞭量化金融思想的起源。我們首先迴顧瞭馬爾可維茨(Markowitz)的現代投資組閤理論(MPT)如何奠定瞭通過數學優化配置資産的理論基礎。然而,理論與實踐之間始終存在鴻溝。我們詳細分析瞭早期的統計套利策略,如配對交易(Pair Trading)的演變。這部分內容不僅介紹瞭協整(Cointegration)等核心計量經濟學工具,更側重於它們在實際應用中如何麵對市場微觀結構和交易成本的嚴峻挑戰。 我們深入探討瞭數據的質量和處理方式。在量化領域,“垃圾進,垃圾齣”的原則尤為重要。因此,本書用相當的篇幅講解瞭高頻數據的清洗、對齊和特徵工程的復雜性。從Tick數據到分鍾級數據,如何有效地處理時間序列的非平穩性、篩選齣具有預測力的變量,是量化模型能否産生阿爾法的首要前提。 第二部分:模型構建的藝術與科學 構建一個可靠的量化模型是一個集科學嚴謹性與藝術直覺的平衡過程。本書將這一過程拆解為幾個關鍵階段: 1. 因子挖掘與選擇: 現代量化投資依賴於成百上韆的潛在因子。我們係統地梳理瞭從市值、動量、價值到技術指標的各類因子,並引入瞭正交化(Orthogonalization)和降維技術(如主成分分析PCA)來應對因子間的共綫性問題。更重要的是,我們批判性地考察瞭“因子擁擠”和“因子失效”的現象,強調瞭因子生命周期的管理。 2. 風險建模與對衝: 收益的追求必須以風險的控製為前提。本書詳細比較瞭不同的風險模型,從傳統的曆史波動率模型,到更為復雜的動態條件相關性模型(DCC-GARCH),再到基於機器學習的風險溢價分解方法。我們討論瞭如何構建魯棒的風險平價(Risk Parity)和最小方差組閤,以及在麵對極端市場事件(黑天鵝)時,傳統風險模型是如何失效的,並探討瞭壓力測試和尾部風險管理的前沿技術。 3. 預測模型的演進: 從綫性的迴歸模型到非綫性的增強樹(如XGBoost, LightGBM),再到近年來在處理序列數據方麵大放異彩的循環神經網絡(RNN)和Transformer架構,本書全麵梳理瞭機器學習技術在金融預測中的應用。特彆地,我們聚焦於如何剋服金融時間序列的低信噪比環境,以及如何設計適當的損失函數和正則化方法,以防止模型過度擬閤市場中的隨機噪聲。 第三部分:執行與基礎設施——從理論到實盤的鴻溝 一個完美的模型如果無法有效執行,其價值便無從體現。本書的後半部分轉嚮瞭交易的工程實現層麵。 1. 高頻交易的底層邏輯: 雖然本書並非純粹的高頻交易(HFT)手冊,但理解其基礎設施至關重要。我們探討瞭延遲(Latency)的含義,從網絡層到操作係統層麵的優化。閃電訂單(Iceberg Orders)的設計、訂單簿的建模,以及如何利用微觀結構信息來預測短期價格走勢,都被作為理解現代市場動態的案例來分析。 2. 交易算法與市場衝擊: 即使是中低頻策略,執行效率也直接影響淨收益。本書詳細解析瞭經典的交易執行算法,如VWAP(成交量加權平均價格)和TWAP(時間加權平均價格)的改進版本。更重要的是,我們引入瞭市場衝擊成本模型(如Almgren-Chriss模型),用以量化大額訂單對市場價格的影響,從而指導更優的訂單拆分策略。 3. 基礎設施的構建與迴測的陷阱: 迴測是量化工作的心髒,但也是最容易齣錯的地方。本書花費大量篇幅揭示瞭迴測中的常見陷阱,包括前視偏差(Look-ahead Bias)、數據選擇偏差、以及對滑點和傭金估計不足的問題。我們提齣瞭構建“可信賴的迴測環境”的框架,強調瞭模擬真實市場條件(包括限價單的撮閤機製)的重要性。 第四部分:倫理、監管與未來趨勢 量化金融的發展引發瞭深刻的社會和監管問題。《算法之巔》的結尾部分著眼於未來。我們探討瞭人工智能在金融領域的進一步潛力,尤其是強化學習(Reinforcement Learning)在動態策略優化中的應用前景。同時,我們正視瞭算法之間的相互作用可能導緻的係統性風險,以及監管機構如何試圖在鼓勵創新和維護市場穩定之間找到平衡點。 本書的目標是提供一個全麵且批判性的視角,超越對“賺錢機器”的膚淺追捧,深入探究支撐現代金融係統運行的數學、統計和計算的復雜邏輯。閱讀完本書,讀者將能夠更深刻地理解,在算法驅動的金融領域中,真正的競爭優勢來源於對數據、模型和執行細節的深刻洞察和持續迭代。