图像处理中的数学问题(第2版)(英文版) [Mathematical Problems In Image Processing:Partial Differential Equations and the Calculus of Variations]

图像处理中的数学问题(第2版)(英文版) [Mathematical Problems In Image Processing:Partial Differential Equations and the Calculus of Variations] pdf epub mobi txt 电子书 下载 2025

[法] 奥伯特 著
图书标签:
  • 图像处理
  • 偏微分方程
  • 变分法
  • 数学方法
  • 图像分析
  • 数值分析
  • 优化算法
  • PDE
  • 图像建模
  • 计算成像
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 世界图书出版公司
ISBN:9787510005381
版次:1
商品编码:10104513
包装:平装
外文名称:Mathematical Problems In Image Processing:Partial Differential Equations and the Calculus of Variations
开本:24开
出版时间:

具体描述

内容简介

Introduction、The Image Society、What Is a Digital Image、About Partial Differential Equations(PDEs)、Detailed Plan、Mathematical Preliminaries、How to Read This Chapter、The Direct Method in the Calculus of Vgriations、Topologies on Banach Spaces、Convexity and Lower Semicontinuity、Rclaxation、Aboutr-Convergence、The Space of Functions of Bounded Variation、Basic Definitions on Measures、Definition ofBV(Ω)、Properties ofBV(Ω)、Convex Functions of Measures、Viscosity Solutions in PDEs等等。

内页插图

目录

Foreword
Preface to the Second Edition
Preface to the First Edition
Guide to the Main Mathematical Concepts and
Their Application
Notation and Symbols
1 Introduction
1.1 The Image Society
1.2 What Is a Digital Image7
1.3 About Partial Differential Equations(PDEs)
1.4 Detailed Plan

2 Mathematical Preliminaries
How to Read This Chapter.
2.1 The Direct Method in the Calculus of Vgriations
2.1.1 Topologies on Banach Spaces
2.1.2 Convexity and Lower Semicontinuity
2.1.3 Rclaxat.ion
2.1.4 About r-Convergence
2.2 The Space of Functions of Bounded Variation
2.2.1 Basic Definitions on Measures
2.2.2 Definition ofBV(Ω)
2.2.3 Properties ofBV(Ω)
2.2.4 Convex Functions of Measures
2.3 Viscosity Solutions in PDEs
2.3.1 About the Eikonal Equation
2.3.2 Definition of Viscosity Solutions
2.3.3 About the Existence
2.3.4 About the Uniqueness
2.4 Elements of Differential Geometry:Curvature
2.4.1 Parametrized Curves
2.4.2 Curves aS Isolevel of a Function u
2.4.3 Images aS Surfaces
2.5 0ther Classical Results Used in This Book
2.5.1 Inequalities
2.5.2 Calculus Facts
2.5.3 About Convolution and Smoothing
2.5.4 Uniform Convergence
2.5.5 Dominated Convergence了heorem
2.5.6 Well-Posed Problems

3 Image Restoration How to Read This Chapter
3.1 Image Degradation
3.2 The Energy Method
3.2.1 An Inverse Problem
3.2.2 Regularization of the Problem
3.2.3 Existence and Uniqueness of a Solution for the Minimization Problem
3.2.4 Toward the Numerical Approximation
The Projection Approach
The Half-Quadratic Minimization Approach
3.2.5 Some Invariances and the Role of
3.2.6 Some Remarks on the Nonconvex CaSe
3.3 PDE-BaSed Methods
3.3.1 Smoothing PDEs
The Heat Equation
Nonlinear DiRusion
The Alvarez-Guichard-Lions-Morel
Scale Space Theory
Weickerts Approach
Surface Based Approaches
3.3.2 Smoothing-Enhancing PDEs
The Perona and Malik Model
Regutarization of the Perona and Malik Model:Catte et aL
3.3.3 Enhancing PDEs
The Osher and Rudin Shock Filters
A Case Study:Construction of a Solution by the Method ofCharacteristics
Comments on the Shock-Filter Equation
3.3.4 NeighborbOOd Filters,Nonlocal Means Algorithm,and PDEs
Neighborhood Filters
How to Suppress the Staircase Effect?
Nonlocal Means Filter(NL-Means)

4 The Segmentation Problem
How to Read This Chapter
4.1 Definition and Objectives
4.2 The Mumford and Shah Functional
4.2.1 A Minimization Problem
4.2.2 The Mathematical Framework for the Existence of a Solution
4.2.3 Regularity of the Edge Set
4.2.4 Approximations of the Mumford and Shah Functional
4.2.5 Experimental Results
4.3 Geodesic Active Contours and the Level.Set Method
4.3.1 The Kass-Witkin-Terzopoulos model
4.3.2 The Geodesic Active Contours Model
4.3.3 The Level-Set Method
4.3.4 The Reinitialization Equation
CharaCterization of the Distance Function
Existence and Uniqueness
4.3.5 Experimental Results
4.3.6 About Some Recent Advances
Global Stopping Criterion
Toward More General Shape Representation

5 Other Challenging AppliCations
How to Read This Chapter
5.1 Reinventing Some Image Parts by Inpainting
5.1.1 IntroduCtion
5.1.2 Variational Models
The Masnou and Morel Approach
The Ballester et al.Approach
The Chan and Shen Total Variation Minimization
Approach
5.1.3 PDE-Based Approaches
The Bertalmio et a1.Approach
The Chan and Shen Curvature-Driven Diffusion Approach
5.1.4 Discussion
5.2 Decomposing an Image into Geometry and Texture
5.2.1 Introduction
5.2.2 A Space for Modeling Oscillating Patterns
5.2.3 Meyer’S Model.
5.2.4 An Algorithm to Solve Meyer’S Model
Prior Numerical C:ontribution
The Aujol et a1.Approach
Study of the Asymptotic Case
Back to Meyers Model
5.2.5 Experimental Results
Denoising Capabilities
Dealing With Texture
5.2.6 About Some Recent Advances
5.3 Sequence Analysis
5.3.1 Introduction
5.3.2 The Optical Flow:An Apparent Motion
The Optical Flow Constraint(OFC)
Solving the Aperture Problem
Overview of a Discontinuity.Preserving
Variational Approach
Alternatives to the OFC
5.3.3 Sequence Segmentation
Introduction
A Vriational Formulation
Mathematical Study of the Time-Sampled Energy
Experiments
5.3.4 Sequence Restoration
Principles of Video Inpainting
Total Variation(tV)Minimization Approach
Motion Compensated(MC)Inpainting
5.4 Image Classification
5.4.1 Introduction
5.4.2 A Level-Set Approach for Image Classification
5.4.3 A Variational Model for Image Classification and Restoration
5.5 Vector-Valued Images
5.5.1 Introduction
5.5.2 An FXtended Nbtion of Grudieut
A Introduction to Finite Digerence Methods
B Experiment Yourself!
References
Index

精彩书摘

The message we wish to convey iS that the intuition that lcads to certain formulations and the underlying theoretical study are often complementary.
Developing a theoretical justification of a problem is not simply“art for arts sake.”In particular,a deep understanding of the theoretical difficulties may lead to the development of suitable numerical schemes or different models.
This book iS concerned with the mathematical study of certain image processing problems.Thus we target two audiences:
The first iS the mathematical community.and we show the contribution of mathematics to this domain by studying classical and challenging problems that come from computer vision.It is also the occasion to highlight some difficult and unsolved theoretical questions.
The second is the computer vision community:we present a clear. selLC0ntained.and global overview of the mathematics involved for the problems of image restoration,image segmentation,sequence analysis,and image classification.
We hope that this work will serve as a useful source of reference and inspiration for fellow researchers in applied mathematics and computer vision, as well as being a basis for advanced courses within these fields.
This book iS divided into seven main parts.Chapter 1 introduces the subject and gives a detailed plan of the book.In Chapter 2,most of the mathematical notions used therein are recalled in an educative fashion and illustrated in detail.In Chapters 3 and 4 we examine how PDES and variational methods can be Successfully applied in the restoration and segmentation of one image.Chapter 5 is more applied,and some challenging computer vision problems are described,such as inpainting,sequence analysis,classification or vector-valued image processing.Since the final goal of any approach is to compute a numerical solution,we propose an introduction to the method of finite difierences in the Appendix.

前言/序言

  It is surprising when we realize just how much we are surrounded by images.Images allow US not only to perform complex tasks on a daily basis, but also to communicate,transmit information,and represent and under. stand the world around US.Just think、for instance、about digital television, medical imagery,and video surveillance.The tremendous development in information technology accounts for most of this.we are now able to handle more and more data.Many day.to-day tasks are now fully or partially accomplished with the help of computers.Whenever images are involved we are entering the domains of computer vision and image processing.
  The requirements for this are reliability and speed.Efficient algorithms have to be proposed to process these digital data.It is also important to rely on a well-established theory to iustifv the well-founded nature of the methodology.
  Among the numerous approaches that have been suggested,we focus on partial difierential equations(PDEs),and variational approaches in this book.Traditionally applied in physics.these methods have been successfully and widely transferred to computer vision over the last decade.One of the main interests in using PDEs iS that the theory behind the concept iS well established.Of course.PDEs are written in a continuous setting referring to analogue images, and once the existence and the uniqueness have been proven.we need to discretize them in order to find a numerical solution.It iS our conviction that reasoning within a continuous frame work makes the underStanding of physical realities easier and stimulates the intuition necessary to propose new models.We hope that this book will illustrate this idea effectively.

好的,这是一份基于您提供的书名和英文原名,但不包含该书具体内容的图书简介,旨在详细介绍一个不同的、相关领域的图书可能涵盖的内容。 --- 图书简介:计算几何与三维重建的理论基础 书名: 计算几何与三维重建的理论基础 (Foundations of Computational Geometry and 3D Reconstruction) 版本: 第二版 作者: [此处可虚拟一位专家姓名,例如:李明 教授] ISBN: [此处可虚拟一个ISBN号] --- 导言:从数据到数字孪生 在信息时代,我们每天都在生成海量的数字化信息。其中,对现实世界进行精确的几何描述和三维建模的需求日益增长,这不仅是计算机图形学、虚拟现实(VR/AR)的核心,也是机器人导航、自动驾驶、工业检测乃至医学影像分析的关键技术支撑。本书旨在为读者提供一个坚实的理论框架,深入探讨如何从离散的、不完备的传感器数据(如点云、多视角图像)中提取、计算并构建出精确、鲁棒的三维几何模型。 本书聚焦于计算几何的核心算法与原理,并将其应用于三维重建的实际问题中。我们避免了对具体软件或应用场景的肤浅介绍,而是专注于支撑这些应用背后的数学和算法逻辑,确保读者能够理解并掌握从底层原理到高层实现的转化过程。 第一部分:离散几何与拓扑基础 本书的基石建立在对离散空间的精确描述之上。我们将从欧几里得空间中的基本概念出发,系统地介绍处理不规则数据的数学工具。 第1章:点集拓扑与邻域结构 本章详细阐述了如何定义和处理三维空间中的点云数据。内容涵盖: 邻域的定义与选择: $epsilon$-球邻域、k-近邻(k-NN)图的构建与性质分析。重点讨论了不同邻域选择对后续几何计算稳定性的影响。 曲率的离散估计: 介绍基于局部协方差矩阵(PCA)的点法线估计方法,并深入推导法向量估计的误差边界。曲率的计算方法,包括高斯曲率和平均曲率的离散化近似,以及它们在特征点检测中的应用。 拓扑结构: 引入单纯复形(Simplicial Complexes)的概念,为后续的表面重建奠定理论基础。讨论了持久同调(Persistent Homology)在点云去噪和特征提取中的初步应用,以理解数据的内在“洞”和连通性。 第2章:空间划分与数据加速结构 为了高效处理大规模点云数据,高效的空间索引结构至关重要。本章专注于空间划分技术: Kd-树与八叉树(Octrees): 深入分析这些数据结构的构造算法、最优性分析以及在最近邻搜索中的性能表现。讨论了动态更新与平衡性的问题。 空间剖分与体素化: 介绍如何将无序点云映射到规则的体素空间中,探讨网格分辨率的选择标准,以及体素化在传感器数据融合中的作用。 第二部分:曲面重建的数学方法 三维重建的核心任务是将离散的采样点提升为一个连续、光滑的几何表面。本部分将重点剖析几种主流的、具有严格数学背景的重建方法。 第3章:基于隐式函数的重建 隐式曲面表示因其处理拓扑复杂性、自动封闭性的优势而被广泛采用。 辐射基函数(RBFs)方法: 详细介绍如何利用RBFs构造一个全局插值函数来描述曲面,推导其求解过程中的病态性(Ill-conditioning)问题,并讨论正则化(Regularization)技术,如Tikhonov正则化,以增强解的稳定性。 泊松重建(Poisson Surface Reconstruction, PSR): 这是当前应用最广泛的隐式方法之一。本章将深入剖析其理论基础——梯度场积分的求解。我们将详尽推导泊松方程的推导过程,分析其与向量场散度的关系,并探讨如何选择合适的基函数和边界条件来优化重建结果。 第4章:三角网格化与参数化方法 针对需要直接生成三角网格输出的场景,本章介绍基于局部几何约束的方法。 Delaunay三角剖分与Voronoi图: 讨论在三维空间中进行空腔填充和表面构建的原理,特别是在曲面重建背景下的约束Delaunay三角剖分。 最小二乘拟合与局部表面参数化: 介绍如何通过局部最小二乘拟合来估计表面法线和曲率,并利用这些信息进行网格的平滑处理(如Laplacian平滑)和细节保持(如二次误差度量Eigensystem Smoothing)。 Delaunay/Voronoi在体积重建中的扩展: 如何从点云直接生成一个封闭的、无自交的表面(例如,利用“最近的体素”方法与空域搜索相结合)。 第三部分:多视角几何与非刚性配准 现代三维重建越来越多地依赖于图像数据。本部分将深入几何计算如何与图像处理相结合,特别是解决场景中物体运动或相机位姿估计的问题。 第5章:对极几何与单应性矩阵 本章是多视角几何的基础,重点在于理解不同视角之间的几何关系。 基础矩阵(Fundamental Matrix)与本质矩阵(Essential Matrix): 详细推导这两种矩阵的几何含义,分析其在归一化坐标系下的约束条件,并介绍RANSAC等鲁棒估计方法来处理图像中的噪声点。 单应性(Homography)的应用: 讨论在平面场景中,如何利用单应性矩阵进行纹理映射和平面场景的校正。 第6章:非刚性配准与变形模型 当物体表面发生非刚性形变时,传统的刚性配准方法失效。 Thin-Plate Spline (TPS) 模型: 介绍TPS如何作为一种柔性变换模型,用于描述和量化表面形变。重点分析其能量泛函的构造,以及如何最小化形变和拟合数据的平衡。 基于特征点的流形学习配准: 探讨如何利用高维特征空间中的距离度量来驱动非刚性配准,包括局部线性嵌入(LLE)在表面变形跟踪中的应用。 结语 本书的难度定位于高年级本科生、研究生以及从事相关领域研究和开发的工程师。通过对这些核心数学模型和算法的深入剖析,读者将不仅能“使用”现有的三维重建工具,更能理解其局限性,并有能力设计出更高效、更鲁棒的定制化解决方案。本书强调数学严谨性与计算可行性之间的平衡,旨在培养读者将抽象数学概念转化为实际工程能力的思维方式。 ---

用户评价

评分

作为一个对图像处理的数学基础充满求知欲的读者,这本书的书名《图像处理中的数学问题》(第2版)(英文版)[Mathematical Problems In Image Processing:Partial Differential Equations and the Calculus of Variations] 就像是一扇通往更深层次理解的大门。我一直觉得,要真正掌握一门技术,就必须了解其背后的科学原理。图像处理,这个充满视觉魔力的领域,其背后必然隐藏着精妙的数学模型。特别是“偏微分方程”和“变分法”,这两个词汇在我脑海中勾勒出了一种强大的解决问题的能力,仿佛它们能够描述和优化图像中各种复杂的变化。

评分

这本书的名字听起来就十分硬核,我一直对图像处理这个领域充满好奇,但又有点畏惧数学的门槛。一直以来,我总觉得图像处理的魅力在于那些令人惊叹的视觉效果,但深究其背后,必然是复杂的数学原理在支撑。这本书的出现,让我看到了一个系统学习这些“幕后英雄”的机会。尤其是“偏微分方程”和“变分法”这两个词,虽然听起来很专业,但仔细想想,它们在描述连续变化、寻找最优解等问题上,恰恰是图像处理中不可或缺的工具。比如,图像的平滑、去噪、边缘检测,甚至更复杂的图像恢复和分割,都离不开这些数学工具的精妙运用。

评分

我一直对那些能够将抽象数学理论与实际应用紧密结合的书籍情有独钟。这本书的书名就直接点出了“图像处理中的数学问题”,这让我立刻产生了浓厚的兴趣。我曾在一些图像处理的论文中零散地接触过偏微分方程和变分法的概念,但总感觉缺乏一个系统性的梳理和深入的理解。这本书似乎正是我一直在寻找的,它提供了一个框架,让我能够从数学的视角去理解图像处理的本质,而不是仅仅停留在算法层面。我期待它能够帮助我建立起一个更扎实、更全面的知识体系,从而在未来的学习和研究中,能够更自信地面对各种图像处理的挑战。

评分

我一直以来都对计算机视觉和图像分析领域充满热情,但深知数学基础的重要性。每当看到那些令人惊叹的图像处理技术,例如超分辨率重建、图像去噪、医学影像分析等,我都会好奇其背后的数学原理。这本书的书名《图像处理中的数学问题》(第2版)(英文版)[Mathematical Problems In Image Processing:Partial Differential Equations and the Calculus of Variations],恰好精准地捕捉了我内心深处的求知欲。我特别希望能够通过这本书,深入理解偏微分方程和变分法是如何被巧妙地应用于解决这些实际的图像处理问题的,从而提升自己在这个领域的理论深度和实践能力。

评分

在我眼中,图像处理不仅仅是算法的堆砌,更是一种将数学的美感转化为视觉体验的过程。这本书的书名,《图像处理中的数学问题》(第2版)(英文版)[Mathematical Problems In Image Processing:Partial Differential Equations and the Calculus of Variations],就直接点明了这一点。我一直认为,只有深入理解了底层的数学原理,才能真正地掌握图像处理的精髓。偏微分方程和变分法,这两个概念听起来就充满力量,它们似乎能够描绘和解决图像中一切连续而复杂的变换。我渴望通过这本书,能够清晰地看到这些抽象的数学工具如何在实际的图像处理任务中发挥作用,从而让我对这个领域有更深刻的认知。

评分

书很好,应该是比较经典的著作

评分

我正在搞PDE的图像处理,这本是我见到的这方面为数不多的专业书,与陈繁昌的那本比较,我感觉这本更加专业一点。国内也有几本,例如王大凯和冯象初写的,但我更喜欢前两本。

评分

书很好,应该是比较经典的著作

评分

不错,好书,看不懂。

评分

书很好,应该是比较经典的著作

评分

做pde图像处理推荐!!!

评分

是图像处理方面非常经典的图书。很不错

评分

讲解清晰,适合初学者的专业用书

评分

书很好,应该是比较经典的著作

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.coffeedeals.club All Rights Reserved. 静流书站 版权所有