Python+Spark 2.0+Hadoop機器學習與大數據實戰 林大貴 計算機與互聯

Python+Spark 2.0+Hadoop機器學習與大數據實戰 林大貴 計算機與互聯 pdf epub mobi txt 電子書 下載 2025

林大貴著 著
圖書標籤:
  • Python
  • Spark
  • Hadoop
  • 機器學習
  • 大數據
  • 數據分析
  • 實戰
  • 計算機
  • 互聯網
  • 林大貴
想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
店鋪: 文軒網旗艦店
齣版社: 清華大學齣版社
ISBN:9787302490739
商品編碼:24790057891
開本:16開
齣版時間:2018-01-01
頁數:519
字數:864000

具體描述

作  者:林大貴 著 定  價:99 齣 版 社:清華大學齣版社 齣版日期:2018年01月01日 頁  數:519 裝  幀:平裝 ISBN:9787302490739 第1章 Python Spark機器學習與Hadoop大數據 1
1.1 機器學習的介紹 2
1.2 Spark的介紹 5
1.3 Spark數據處理 RDD、DataFrame、Spark SQL 7
1.4 使用Python開發 Spark機器學習與大數據應用 8
1.5 Python Spark 機器學習 9
1.6 Spark ML Pipeline機器學習流程介紹 10
1.7 Spark 2.0的介紹 12
1.8 大數據定義 13
1.9 Hadoop 簡介 14
1.10 Hadoop HDFS分布式文件係統 14
1.11 Hadoop MapReduce的介紹 17
1.12 結論 18
第2章 VirtualBox虛擬機軟件的安裝 19
2.1 VirtualBox的下載和安裝 20
2.2 設置VirtualBox存儲文件夾 23
2.3 在VirtualBox創建虛擬機 25
2.4 結論 29
第3章 Ubuntu Linux 操作係統的安裝 30
3.1 Ubuntu Linux 操作係統的安裝 31
部分目錄

內容簡介

本書從淺顯易懂的“大數據和機器學習”原理說明入手,講述大數據和機器學習的基本概念,如分類、分析、訓練、建模、預測、機器學習(推薦引擎)、機器學習(二元分類)、機器學習(多元分類)、機器學習(迴歸分析)和數據可視化應用等。書中不僅加入瞭新近的大數據技術,還豐富瞭“機器學習”內容。為降低讀者學習大數據技術的門檻,書中提供瞭豐富的上機實踐操作和範例程序詳解,展示瞭如何在單機Windows係統上通過Virtual Box虛擬機安裝多機Linux虛擬機,如何建立Hadoop集群,再建立Spark開發環境。書中介紹搭建的上機實踐平颱並不於單颱實體計算機。對於有條件的公司和學校,參照書中介紹的搭建過程,同樣可以實現將自己的平颱搭建在多颱實體計算機上,以便更加接近於大數據和機器學習真實的運行環境。本書很好適閤於學習大數據基礎知識的初學者閱讀,更適閤正在學習大數據理論和技術的人員作為上機實踐用的教等 林大貴 著 林大貴,從事IT行業多年,在係統設計、網站開發、數字營銷、商業智慧、大數據、機器學習等領域具有豐富的實戰經驗。
Python, Spark, and Hadoop: Unleashing the Power of Big Data and Machine Learning for Real-World Applications In today's data-driven world, the ability to process, analyze, and extract meaningful insights from vast datasets is no longer a niche skill but a fundamental requirement for success across numerous industries. As the volume and complexity of data continue to explode, traditional computing methods falter, demanding the adoption of robust, scalable, and efficient big data technologies. This is where the synergistic power of Python, Apache Spark, and Apache Hadoop truly shines. This comprehensive guide delves deep into the practical application of these foundational technologies, empowering you to build and deploy sophisticated machine learning models and big data solutions that tackle real-world challenges. The journey begins with a solid understanding of the Big Data ecosystem and the pivotal roles played by Hadoop and Spark. We will demystify the core concepts of distributed computing, explaining how Hadoop's MapReduce framework laid the groundwork for processing massive datasets across clusters of commodity hardware. You'll gain a clear grasp of the Hadoop Distributed File System (HDFS) and its vital function in storing and managing petabytes of data reliably and efficiently. Furthermore, we'll explore the evolution from MapReduce to Spark, highlighting Spark's dramatic performance improvements through its in-memory processing capabilities and its versatile API that supports various workloads, including batch processing, real-time streaming, SQL queries, and graph processing. Python, with its elegant syntax, extensive libraries, and thriving community, has become the de facto programming language for data science and machine learning. This guide will equip you with the essential Python skills needed to interact seamlessly with Spark and Hadoop. We will cover fundamental Python concepts, data manipulation with libraries like Pandas, and the crucial data structures and algorithms that underpin effective data analysis. You'll learn how to leverage Python's rich ecosystem of machine learning libraries, such as Scikit-learn, TensorFlow, and PyTorch, and understand how to integrate these powerful tools with your big data pipelines. The heart of this guide lies in its practical, hands-on approach to building and deploying real-world applications. We will guide you through the process of setting up and configuring a Hadoop and Spark environment, whether it's a local development setup or a cluster deployment on cloud platforms like AWS, Azure, or Google Cloud. You'll gain proficiency in writing Spark applications using PySpark, the Python API for Spark, enabling you to harness Spark's distributed processing power for data transformation, feature engineering, and model training on large datasets. Machine learning is a cornerstone of extracting value from big data. This guide provides a comprehensive exploration of various machine learning algorithms, from classic techniques like linear regression, logistic regression, decision trees, and support vector machines to more advanced methods like ensemble learning (random forests, gradient boosting) and deep learning architectures (convolutional neural networks, recurrent neural networks). Crucially, we will focus on how to apply these algorithms within a distributed computing framework. You'll learn how to train models on distributed datasets using Spark MLlib, Spark's native machine learning library, and how to optimize model performance for large-scale scenarios. This includes understanding concepts like distributed training, hyperparameter tuning in a distributed environment, and model deployment strategies for big data applications. Beyond individual machine learning algorithms, the guide emphasizes the entire machine learning lifecycle within the context of big data. This encompasses data preprocessing techniques tailored for large datasets, such as handling missing values, feature scaling, encoding categorical variables, and dimensionality reduction. You'll learn how to perform effective feature engineering to create informative features that drive model accuracy, understanding how to do this efficiently on distributed data. Model evaluation and selection will be covered in detail, focusing on metrics relevant to big data problems and strategies for robust model validation. Furthermore, we will address the critical aspects of model deployment, including how to integrate trained models into real-time data processing pipelines and how to monitor their performance in production. The capabilities of Spark extend far beyond batch processing. This guide will introduce you to Spark Streaming, enabling you to build real-time data processing applications. You'll learn how to ingest data from various sources, such as Kafka or Kinesis, perform transformations and aggregations on streaming data, and even train and deploy machine learning models that can make predictions on incoming data streams. This opens up possibilities for building applications like real-time fraud detection systems, dynamic recommendation engines, and live anomaly detection. Graph processing is another powerful facet of Spark that will be explored. We will delve into GraphX, Spark's API for graph computation. You'll learn how to represent graph data, perform fundamental graph algorithms like PageRank and connected components, and apply these techniques to problems such as social network analysis, recommendation systems, and fraud detection in network structures. Real-world applications are the ultimate test of these technologies. Throughout the guide, you will encounter numerous case studies and practical examples that demonstrate how Python, Spark, and Hadoop are used to solve pressing business problems. These examples will span diverse domains, including: E-commerce and Retail: Building personalized recommendation systems, predicting customer churn, optimizing pricing strategies, and analyzing customer behavior. Finance: Detecting fraudulent transactions in real-time, assessing credit risk, algorithmic trading, and analyzing market trends. Healthcare: Analyzing medical records for disease prediction, identifying patterns in patient data, and developing personalized treatment plans. IoT and Sensor Data: Processing and analyzing data from connected devices for predictive maintenance, anomaly detection, and performance monitoring. Natural Language Processing (NLP): Sentiment analysis, topic modeling, text summarization, and building intelligent chatbots on large text corpora. We will also touch upon important considerations for working with big data, such as data governance, security, and performance optimization. You'll learn techniques for tuning Spark jobs, optimizing data storage, and ensuring the scalability and reliability of your big data solutions. Understanding the nuances of distributed systems, including data partitioning, shuffling, and fault tolerance, will be integral to building robust and efficient applications. This guide is designed for individuals who are passionate about leveraging the power of data to drive innovation. Whether you are a data scientist, a machine learning engineer, a software developer looking to expand your skillset, or a business analyst eager to harness the potential of big data, this book will provide you with the knowledge and practical experience needed to excel in this rapidly evolving field. By mastering the synergy of Python, Spark, and Hadoop, you will be well-equipped to tackle complex data challenges, build intelligent applications, and unlock unprecedented insights from the vast ocean of data that surrounds us.

用戶評價

評分

評價一: 這本書簡直是打開瞭我通往大數據和機器學習新世界的大門!一直以來,我對Spark和Hadoop這些聽起來高大上的技術都覺得遙不可及,感覺像是專屬於大神們的領域。但自從翻開這本書,我的想法徹底改變瞭。作者林大貴老師用一種非常接地氣、循序漸進的方式,把那些復雜的概念拆解得清晰易懂。從最基礎的Python環境搭建,到Spark的核心RDD、DataFrame和Dataset的操作,再到Hadoop的分布式存儲和計算原理,書中都給齣瞭詳盡的解釋和實用的代碼示例。我尤其喜歡書中關於機器學習算法在Spark上的實現部分,那些曾經讓我頭疼的算法,比如邏輯迴歸、決策樹、K-means等,通過Spark的分布式計算能力,變得高效且易於理解。書中的案例也非常貼閤實際業務場景,比如用戶行為分析、推薦係統構建等,讓我能立刻感受到學到的知識是如何應用到實際工作中的。閱讀過程中,我仿佛看到一個清晰的藍圖,一步步指導我如何在真實的大數據環境中,運用Python和Spark的力量,去解決復雜的問題。我迫不及待地想將書中的知識應用到我的項目中,期待看到數據帶來的洞察和價值。

評分

評價四: 這本書給我最大的感受是“全麵”和“前沿”。在當前大數據和人工智能飛速發展的時代,能夠一本涵蓋Python、Spark 2.0和Hadoop這三大核心技術的書籍,並且能結閤機器學習的實戰應用,顯得尤為難得。林大貴老師在書中不僅講解瞭Spark 2.0的新特性,如Structured Streaming和Project Tungsten,還深入探討瞭Hadoop生態係統中各個組件的協同工作方式。我一直對實時數據處理非常感興趣,書中關於Structured Streaming的講解,讓我對如何構建流式處理應用有瞭更清晰的認識。機器學習方麵,作者也緊跟技術發展的步伐,介紹瞭最新的算法和實現技巧。閱讀這本書,我感覺自己仿佛置身於一個最前沿的技術浪潮之中,不斷吸收著最新的知識和理念。而且,書中的一些案例,比如分布式文件係統的使用、MapReduce編程範式、以及Spark的各種API,都讓我受益匪淺。這本書不僅教會我“怎麼做”,更讓我理解瞭“為什麼這麼做”,這種深度思考的引導,對於技術能力的提升至關重要。

評分

評價五: 作為一名從傳統軟件開發轉型的工程師,我一直在努力提升自己在大數據和機器學習領域的能力,而這本書無疑為我指明瞭方嚮。林大貴老師在書中將復雜的理論知識與實際應用相結閤,使得學習過程充滿樂趣和成就感。我特彆喜歡書中關於Hadoop分布式文件係統(HDFS)的講解,它讓我明白瞭在大規模數據集上進行數據存儲和管理的重要性。同時,Spark的內存計算能力和豐富的API,在書中得到瞭淋灕盡緻的展現。我印象深刻的是,作者在講解機器學習算法時,並沒有迴避其中的數學原理,而是用一種非常易於理解的方式將其呈現齣來,並重點強調瞭這些算法在Spark上的高效實現。書中還包含瞭一些關於大數據項目部署和運維的實用建議,這對於將學到的知識應用到實際工作中非常有幫助。總而言之,這本書不僅僅是一本技術書籍,更像是一位良師益友,在我探索大數據和機器學習的道路上,給予瞭我寶貴的指導和鼓勵。

評分

評價二: 作為一名對大數據技術充滿好奇的開發者,我一直在尋找一本能夠係統性地介紹Python、Spark和Hadoop在機器學習和大數據實戰中的書籍。這本書確實滿足瞭我的需求,甚至超齣瞭我的預期。它不僅僅是技術的堆砌,更注重理念的傳達和實戰的指導。林大貴老師在書中對Spark的架構和優化做瞭深入的剖析,這對於理解Spark的性能瓶頸和調優策略至關重要。我特彆欣賞書中關於Spark SQL和DataFrame API的講解,這些API讓數據處理變得更加簡潔高效。同時,書中也強調瞭Hadoop在整個大數據生態係統中的角色,以及如何與Spark協同工作,形成強大的數據處理能力。機器學習的部分,作者挑選瞭幾個最常用且重要的算法,並詳細講解瞭它們在Spark上的實現細節,包括數據預處理、模型訓練、評估和調優等全流程。讓我印象深刻的是,書中還涉及瞭一些關於大數據存儲和計算的底層原理,這對於深入理解技術非常有幫助。整本書的邏輯清晰,章節安排閤理,從基礎概念到高級應用,層層遞進,非常適閤有一定編程基礎的讀者進行學習。

評分

評價三: 坦白說,我最初購買這本書是抱著試試看的心態,因為市麵上關於大數據和機器學習的書籍琳琅滿目,很難找到真正適閤自己且能帶來啓發的內容。然而,這本書給我帶來瞭巨大的驚喜。作者林大貴老師在敘述技術細節的同時,始終不忘迴歸“實戰”的本質。書中的每個章節都伴隨著精心設計的代碼示例,這些示例不僅能夠幫助讀者理解概念,更重要的是,它們都是可以直接運行並産生結果的。我嘗試著跟著書中的步驟,在自己的環境中部署瞭Spark和Hadoop集群,並運行瞭其中的一些示例代碼。整個過程非常順暢,這得益於作者清晰的指導和對常見問題的預判。機器學習的部分,我覺得這本書做得尤為齣色。它沒有停留在理論層麵,而是非常務實地講解瞭如何利用Spark MLlib庫來構建和優化機器學習模型,例如如何處理特徵工程、選擇閤適的評估指標,以及如何進行參數調優以獲得更好的模型性能。這本書就像一位經驗豐富的大數據工程師,手把手地教你如何在大數據浪潮中揚帆起航。

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.coffeedeals.club All Rights Reserved. 靜流書站 版權所有