预售 出版时间2016-8月下旬左右
产品参数:
产品名称:Python数据分析实战
是否是套装: 否
书名: Python数据分析实战
定价: 59.00元
出版社名称: 人民邮电出版社
作者: Fabio Nelli
书名: Python数据分析实战
ISBN编号: 9787115432209
目录
第1章 数据分析简介 1
1.1 数据分析 1
1.2 数据分析师的知识范畴 2
1.2.1 计算机科学 2
1.2.2 数学和统计学 3
1.2.3 机器学习和人工智能 3
1.2.4 数据来源领域 3
1.3 理解数据的性质 4
1.3.1 数据到信息的转变 4
1.3.2 信息到知识的转变 4
1.3.3 数据的类型 4
1.4 数据分析过程 4
1.4.1 问题定义 5
1.4.2 数据抽取 6
1.4.3 数据准备 6
1.4.4 数据探索和可视化 7
1.4.5 预测模型 7
1.4.6 模型评估 8
1.4.7 部署 8
1.5 定量和定性数据分析 9
1.6 开放数据 9
1.7 Python和数据分析 11
1.8 结论 11
第2章 Python世界简介 12
2.1 Python——编程语言 12
2.2 Python——解释器 13
2.2.1 Cython 14
2.2.2 Jython 14
2.2.3 PyPy 14
2.3 Python 2和Python 3 14
2.4 安装Python 15
2.5 Python发行版 15
2.5.1 Anaconda 15
2.5.2 Enthought Canopy 16
2.5.3 Python(x,y) 17
2.6 使用Python 17
2.6.1 Python shell 17
2.6.2 运行完整的Python程序 17
2.6.3 使用IDE编写代码 18
2.6.4 跟Python交互 18
2.7 编写Python代码 18
2.7.1 数学运算 18
2.7.2 导入新的库和函数 19
2.7.3 函数式编程 21
2.7.4 缩进 22
2.8 IPython 23
2.8.1 IPython shell 23
2.8.2 IPython Qt-Console 24
2.9 PyPI仓库——Python包索引 25
2.10 多种Python IDE 26
2.10.1 IDLE 26
2.10.2 Spyder 27
2.10.3 Eclipse(pyDev) 27
2.10.4 Sublime 28
2.10.5 Liclipse 29
2.10.6 NinjaIDE 29
2.10.7 Komodo IDE 29
2.11 SciPy 30
2.11.1 NumPy 30
2.11.2 pandas 30
2.11.3 matplotlib 31
2.12 小结 31
第3章 NumPy库 32
3.1 NumPy简史 32
3.2 NumPy安装 32
3.3 ndarray:NumPy库的心脏 33
3.3.1 创建数组 34
3.3.2 数据类型 34
3.3.3 dtype选项 35
3.3.4 自带的数组创建方法 36
3.4 基本操作 37
3.4.1 算术运算符 37
3.4.2 矩阵积 38
3.4.3 自增和自减运算符 39
3.4.4 通用函数 40
3.4.5 聚合函数 40
3.5 索引机制、切片和迭代方法 41
3.5.1 索引机制 41
3.5.2 切片操作 42
3.5.3 数组迭代 43
3.6 条件和布尔数组 45
3.7 形状变换 45
3.8 数组操作 46
3.8.1 连接数组 46
3.8.2 数组切分 47
3.9 常用概念 49
3.9.1 对象的副本或视图 49
3.9.2 向量化 50
3.9.3 广播机制 50
3.10 结构化数组 52
3.11 数组数据文件的读写 53
3.11.1 二进制文件的读写 54
3.11.2 读取文件中的列表形式数据 54
3.12 小结 55
第4章 pandas库简介 56
4.1 pandas:Python数据分析库 56
4.2 安装 57
4.2.1 用Anaconda安装 57
4.2.2 用PyPI安装 58
4.2.3 在Linux系统的安装方法 58
4.2.4 用源代码安装 58
4.2.5 Windows模块仓库 59
4.3 测试pandas是否安装成功 59
4.4 开始pandas之旅 59
4.5 pandas数据结构简介 60
4.5.1 Series对象 60
4.5.2 DataFrame对象 66
4.5.3 Index对象 72
4.6 索引对象的其他功能 74
4.6.1 更换索引 74
4.6.2 删除 75
4.6.3 算术和数据对齐 77
4.7 数据结构之间的运算 78
4.7.1 灵活的算术运算方法 78
4.7.2 DataFrame和Series对象之间的运算 78
4.8 函数应用和映射 79
4.8.1 操作元素的函数 79
4.8.2 按行或列执行操作的函数 80
4.8.3 统计函数 81
4.9 排序和排位次 81
4.10 相关性和协方差 84
4.11 NaN数据 85
4.11.1 为元素赋NaN值 85
4.11.2 过滤NaN 86
4.11.3 为NaN元素填充其他值 86
4.12 等级索引和分级 87
4.12.1 重新调整顺序和为层级排序 89
4.12.2 按层级统计数据 89
4.13 小结 90
第5章 pandas:数据读写 91
5.1 I/O API 工具 91
5.2 CSV和文本文件 92
5.3 读取CSV或文本文件中的数据 92
5.3.1 用RegExp解析TXT文件 94
5.3.2 从TXT文件读取部分数据 96
5.3.3 往CSV文件写入数据 97
5.4 读写HTML文件 98
5.4.1 写入数据到HTML文件 99
5.4.2 从HTML文件读取数据 100
5.5 从XML读取数据 101
5.6 读写Microsoft Excel文件 103
5.7 JSON数据 105
5.8 HDF5格式 107
5.9 pickle——Python对象序列化 108
5.9.1 用cPickle实现Python对象序列化 109
5.9.2 用pandas实现对象序列化 109
5.10 对接数据库 110
5.10.1 SQLite3数据读写 111
5.10.2 PostgreSQL数据读写 112
5.11 NoSQL数据库MongoDB数据读写 114
5.12 小结 116
第6章 深入pandas:数据处理 117
6.1 数据准备 117
6.2 拼接 122
6.2.1 组合 124
6.2.2 轴向旋转 125
6.2.3 删除 127
6.3 数据转换 128
6.3.1 删除重复元素 128
6.3.2 映射 129
6.4 离散化和面元划分 132
6.5 排序 136
6.6 字符串处理 137
6.6.1 内置的字符串处理方法 137
6.6.2 正则表达式 139
6.7 数据聚合 140
6.7.1 GroupBy 141
6.7.2 实例 141
6.7.3 等级分组 142
6.8 组迭代 143
6.8.1 链式转换 144
6.8.2 分组函数 145
6.9 高级数据聚合 145
6.10 小结 148
第7章 用matplotlib实现数据可视化 149
7.1 matplotlib库 149
7.2 安装 150
7.3 IPython和IPython QtConsole 150
7.4 matplotlib架构 151
7.4.1 Backend层 152
7.4.2 Artist层 152
7.4.3 Scripting层(pyplot) 153
7.4.4 pylab和pyplot 153
7.5 pyplot 154
7.5.1 生成一幅简单的交互式图表 154
7.5.2 设置图形的属性 156
7.5.3 matplotlib和NumPy 158
7.6 使用kwargs 160
7.7 为图表添加更多元素 162
7.7.1 添加文本 162
7.7.2 添加网格 165
7.7.3 添加图例 166
7.8 保存图表 168
7.8.1 保存代码 169
7.8.2 将会话转换为HTML文件 170
7.8.3 将图表直接保存为图片 171
7.9 处理日期值 171
7.10 图表类型 173
7.11 线性图 173
7.12 直方图 180
7.13 条状图 181
7.13.1 水平条状图 183
7.13.2 多序列条状图 184
7.13.3 为pandas DataFrame生成多序列条状图 185
7.13.4 多序列堆积条状图 186
7.13.5 为pandas DataFrame绘制堆积条状图 189
7.13.6 其他条状图 190
7.14 饼图 190
7.15 高级图表 193
7.15.1 等值线图 193
7.15.2 极区图 195
7.16 mplot3d 197
7.16.1 3D曲面 197
7.16.2 3D散点图 198
7.16.3 3D条状图 199
7.17 多面板图形 200
7.17.1 在其他子图中显示子图 200
7.17.2 子图网格 202
7.18 小结 204
第8章 用scikit-learn库实现机器学习 205
8.1 scikit-learn库 205
8.2 机器学习 205
8.2.1 有监督和无监督学习 205
8.2.2 训练集和测试集 206
8.3 用scikit-learn实现有监督学习 206
8.4 Iris数据集 206
8.5 K-近邻分类器 211
8.6 Diabetes数据集 214
8.7 线性回归:小平方回归 215
8.8 支持向量机 219
8.8.1 支持向量分类 219
8.8.2 非线性SVC 223
8.8.3 绘制SVM分类器对Iris数据集的分类效果图 225
8.8.4 支持向量回归 227
8.9 小结 229
第9章 数据分析实例——气象数据 230
9.1 待检验的假设:靠海对气候的影响 230
9.2 数据源 233
9.3 用IPython Notebook做数据分析 234
9.4 风向频率玫瑰图 246
9.5 小结 251
第10章 IPython Notebook内嵌库D3 252
10.1 开放的人口数据源 252
10.2 库D3 255
10.3 绘制簇状条状图 259
10.4 地区分布图 262
10.5 2014年美国人口地区分布图 266
10.6 小结 270
第11章 识别手写体数字 271
11.1 手写体识别 271
11.2 用scikit-learn识别手写体数字 271
11.3 Digits数据集 272
11.4 学习和预测 274
11.5 小结 276
附录A 用LaTeX编写数学表达式 277
附录B 开放数据源 287
内容简介:
Python 简单易学,拥有丰富的库,并且具有极强的包容性。本书展示了如何利用Python 语言的强大功能,以小的编程代价进行数据的提取、处理和分析,主要内容包括:数据分析和Python 的基本介绍,NumPy 库,pandas 库,如何使用pandas 读写和提取数据,用matplotlib 库和scikit-learn 库分别实现数据可视化和机器学习,以实例演示如何从原始数据获得信息、D3 库嵌入和手写体数字的识别。
··············
`·············
我非常喜欢这本书在案例选择上的独到之处,它并没有选择一些过于陈旧或者过于简单的例子,而是选取了一些贴近实际工作场景的数据集,并围绕这些数据集展开了深入的分析。通过处理真实的数据,我不仅学到了技术,更重要的是对数据分析的整个流程和思维方式有了更深刻的认识。作者在讲解过程中,还会穿插一些关于数据分析的“最佳实践”或者“注意事项”,这些细节的提示,对于帮助我们养成良好的编程习惯和分析习惯非常有价值。读完这本书,我感觉自己解决实际数据问题的能力得到了显著提升,对未来在工作中使用Python进行数据分析充满了信心。
评分这本书的内容深度我个人感觉是比较适中的,既有对Python基础的梳理,又对数据分析的核心库做了详尽的介绍。我之前接触过一些Python入门的书籍,但很多在实际应用方面讲解得比较浅显,这本书在这方面做得很好,它并没有仅仅停留在概念的解释上,而是通过大量的实战案例,手把手地教你如何运用Python来解决实际的数据问题。尤其是它对pandas库的讲解,我觉得是这本书的一大亮点,从数据读取、清洗、转换到可视化,各个环节都讲解得非常透彻,而且给出的代码示例也都非常具有代表性,我按照书中的例子自己动手实践了一下,感觉收获很大,对pandas的理解一下子就深入了很多。
评分从阅读体验上来说,这本书的语言风格很流畅,作者的表达清晰易懂,即使是一些比较抽象的概念,通过他的解释和图示,也能很快地理解。我尤其欣赏作者在讲解过程中,并没有一味地堆砌理论,而是巧妙地将理论知识融入到具体的应用场景中,这样一来,读者不仅能学到“是什么”,更能理解“为什么”以及“怎么做”。这一点对于初学者来说非常重要,它能帮助我们建立起对整个数据分析流程的直观认识,而不是死记硬背一些枯燥的语法。我感觉这本书非常适合那些想要从零开始学习Python数据分析,或者希望进一步提升pandas技能的读者。
评分这本书的装帧设计真的挺用心的,封面采用了一种哑光材质,摸起来很有质感,而且印刷清晰,色彩搭配也很柔和,整体感觉非常专业,放在书架上也很赏心悦目。拿到手的时候就迫不及待地翻开了,纸张的质量也不错,不是那种容易泛黄的劣质纸,阅读起来触感很舒服。整体的排版也很规整,行间距和字号都恰到好处,长时间阅读眼睛也不会觉得疲劳。书的厚度适中,作为一本实操类的书籍,内容量应该挺扎实的。我特别喜欢它那种朴实而又专业的气质,没有过多的花哨设计,一切都围绕着内容本身展开,这种专注于知识本身的风格,让我觉得这本书是值得信赖的。
评分这本书的结构安排也非常合理,循序渐进,逻辑性很强。它首先从Python语言的基础知识入手,确保读者能够掌握必要的前置技能,然后逐步深入到数据分析的核心,通过不同类型的数据集和实际问题的案例,引导读者逐步掌握数据处理和分析的各种技术。这种由浅入深的学习路径,让我在阅读过程中感到非常顺畅,不会因为突然遇到难以理解的内容而产生挫败感。每章节的结尾通常都会有一些练习题或者思考题,这对于巩固所学知识非常有帮助,能够及时检验自己的学习成果,也让我能够发现自己理解上的盲点。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.coffeedeals.club All Rights Reserved. 静流书站 版权所有