內容簡介
Probability Theory、Probability Spaces and Random Elements、σ-fields and measures、Measurable functions and distributions、Integration and Differentiation、Integration、Radon.Nikodym derivative、Distributions and Their Characteristics、Distributions and probability densities、Moments and moment inequalities、Moment generating and characteristic functions、onditional Expectations、Conditional expectations、Independence、Conditional distributions、Markov chains and martingales、Asymptotic Theory、Convergence modes and stochastic orders等等。
內頁插圖
目錄
Preface to the First Edition
Preface to the Second Edition
Chapter 1.Probability Theory
1.1 Probability Spaces and Random Elements
1.1.1σ-fields and measures
1.1.2 Measurable functions and distributions
1.2 Integration and Differentiation
1.2.1 Integration
1.2.2 Radon.Nikodym derivative
1.3 Distributions and Their Characteristics
1.3.1 Distributions and probability densities
1.3.2 Moments and moment inequalities
1.3.3 Moment generating and characteristic functions
1.4 Conditional Expectations
1.4.1 Conditional expectations
1.4.2 Independence
1.4.3 Conditional distributions
1.4.4 Markov chains and martingales
1.5 Asymptotic Theory
1.5.1 Convergence modes and stochastic orders
1.5.2 Weak convergence
1.5.3 Convergence of transformations
1.5.4 The law of large numbers
1.5.5 The central limit theorem
1.5.6 Edgeworth and Cornish-Fisher expansions
1.6 Exercises
Chapter 2. Fundamentals of Statistics
2.1 Populations,Samples,and Models
2.1.1 Populations and samples
2.1.2 Parametric and nonparametric models
2.1.3 Exponential and location.scale families
2.2 Statistics.Sufficiency,and Completeness
2.2.1 Statistics and their distributions
2.2.2 Sufficiency and minimal sufficiency
2.2.3 Complete statistics
2.3 Statistical Decision Theory
2.3.1 Decision rules,lOSS functions,and risks
2.3.2 Admissibility and optimality
2.4 Statistical Inference
2.4.1 P0il)t estimators
2.4.2 Hypothesis tests
2.4.3 Confidence sets
2.5 Asymptotic Criteria and Inference
2.5.1 Consistency
2.5.2 Asymptotic bias,variance,and mse
2.5.3 Asymptotic inference
2.6 Exercises
Chapter 3.Unbiased Estimation
3.1 The UMVUE
3.1.1 Sufficient and complete statistics
3.1.2 A necessary and.sufficient condition
3.1.3 Information inequality
3.1.4 Asymptotic properties of UMVUEs
3.2 U-Statistics
3.2.1 Some examples
3.2.2 Variances of U-statistics
3.2.3 The projection method
3.3 The LSE in Linear Models
3.3.1 The LSE and estimability
3.3.2 The UMVUE and BLUE
3.3.3 R0bustness of LSEs
3.3.4 Asymptotic properties of LSEs
3.4 Unbiased Estimators in Survey Problems
3.4.1 UMVUEs of population totals
3.4.2 Horvitz-Thompson estimators
3.5 Asymptotically Unbiased Estimators
3.5.1 Functions of unbiased estimators
3.5.2 The method ofmoments
3.5.3 V-statistics
3.5.4 The weighted LSE
3.6 Exercises
Chapter 4.Estimation in Parametric Models
4.1 Bayes Decisions and Estimators
4.1.1 Bayes actions
4.1.2 Empirical and hierarchical Bayes methods
4.1.3 Bayes rules and estimators
4.1.4 Markov chain Mollte Carlo
4.2 Invariance......
4.2.1 One-parameter location families
4.2.2 One-parameter seale families
4.2.3 General location-scale families
4.3 Minimaxity and Admissibility
4.3.1 Estimators with constant risks
4.3.2 Results in one-parameter exponential families
4.3.3 Simultaneous estimation and shrinkage estimators
4.4 The Method of Maximum Likelihood
4.4.1 The likelihood function and MLEs
4.4.2 MLEs in generalized linear models
4.4.3 Quasi-likelihoods and conditional likelihoods
4.5 Asymptotically Efficient Estimation
4.5.1 Asymptotic optimality
4.5.2 Asymptotic efficiency of MLEs and RLEs
4.5.3 Other asymptotically efficient estimators
4.6 Exercises
Chapter 5.Estimation in Nonparametric Models
5.1 Distribution Estimators
5.1.1 Empirical C.d.f.s in i.i.d.cases
5.1.2 Empirical likelihoods
5.1.3 Density estimation
5.1.4 Semi-parametric methods
5.2 Statistical Functionals
5.2.1 Differentiability and asymptotic normality
5.2.2 L-.M-.and R-estimators and rank statistics
5.3 Linear Functions of Order Statistics
5.3.1 Sample quantiles
5.3.2 R0bustness and efficiency
5.3.3 L-estimators in linear models
5.4 Generalized Estimating Equations
5.4.1 The GEE method and its relationship with others
5.4.2 Consistency of GEE estimators
5.4.3 Asymptotic normality of GEE estimators
5.5 Variance Estimation
5.5.1 The substitution.method
5.5.2 The jackknife
5.5.3 The bootstrap
5.6 Exercises
Chapter 6.Hypothesis Tests
6.1 UMP Tests
6.1.1 The Neyman-Pearson lemma
6.1.2 Monotone likelihood ratio
6.1.3 UMP tests for two-sided hypotheses
6.2 UMP Unbiased Tests
6.2.1 Unbiasedness,similarity,and Neyman structure
6.2.2 UMPU tests in exponential families
6.2.3 UMPU tests in normal families
……
Chapter 7 Confidence Sets
References
List of Notation
List of Abbreviations
Index of Definitions,Main Results,and Examples
Author Index
Subject Index
前言/序言
This book is intended for a course entitled Mathematical Statistics offered at the Department of Statistics,University of Wisconsin.Madison.This course,taught in a mathematically rigorous fashion,covers essential materials in statistical theory that a first or second year graduate student typicallY needs to learn as preparation for work on a Ph.D.degree in statistics.The course is designed for two 15-week semesters.with three lecture hours and two discussion hours in each week. Students in this course are assumed to have a good knowledge of advanced calgulus.A course in real analy.sis or measure theory prior to this course is often recommended.Chapter 1 provides a quick overview of important concepts and results in measure-theoretic probability theory that are used as tools in mathematical statistics.Chapter 2 introduces some fundamental concepts in statistics,including statistical models.the principle of SUfIlciency in data reduction,and two statistical approaches adopted throughout the book: statistical decision theory and statistical inference.
Each of Chapters 3 through 7 provides a detailed study of an important topic in statistical decision theory and inference:Chapter 3 introduces the theory of unbiased estimation;Chapter 4 studies theory and methods in point estimation ander parametric models;Chapter 5 covers point estimation in nonparametric settings;Chapter 6 focuses on hypothesis testing;and Chapter 7 discusses interval estimation and confidence sets.The classical frequentist approach is adopted in this book.although the Bayesian approach is also introduced (§2.3.2,§4.1,§6.4.4,and§7.1.3).Asymptotic(1arge sample)theory,a crucial part of statistical inference,is studied throughout the book,rather than in a separate chapter.
About 85%of the book covers classical results in statistical theory that are typically found in textbooks of a similar level.These materials are in the Statistics Department’S Ph.D.qualifying examination syllabus.
好的,這是一份關於《概率論基礎與數理統計》(可以假設這是另一本與您提到的英文版教材不同、但主題相關的中文教材)的詳細圖書簡介,內容將側重於其涵蓋的範圍和特色,而不涉及您提供的英文原著內容。 --- 圖書簡介:《概率論基礎與數理統計》(第X版) 定位與目標讀者: 本書旨在為理工科、經濟管理類以及統計學專業本科生提供一套全麵、係統且深入淺齣的概率論與數理統計的入門與進階教材。它不僅嚴格構建瞭概率論的數學基礎,更側重於培養讀者將統計思想應用於實際問題分析的能力。全書內容覆蓋瞭從基礎概率模型到現代統計推斷方法的完整知識體係,特彆適閤作為高等數學學習之後的後續專業基礎課程教材,或作為自學統計學原理的參考讀物。 內容結構與核心章節詳解: 本書的結構清晰,邏輯嚴密,共分為概率論基礎和數理統計兩大核心部分,確保知識點的循序漸進。 第一部分:概率論基礎——隨機現象的量化描述 本部分是全書的基石,旨在建立讀者對隨機性的數學化理解和精確描述能力。 第一章 隨機事件與概率: 引入集閤論的基本概念,為隨機事件的描述打下基礎。重點講解瞭古典概型、幾何概型,並詳述瞭條件概率、事件的獨立性、以及著名的乘法定理與全概率公式、貝葉斯公式。本章強調概率公理體係的嚴謹性,並輔以大量生活和工程中的實例說明如何正確應用這些基本公式。 第二章 隨機變量及其分布: 首次係統介紹隨機變量這一核心工具。詳細區分瞭離散型和連續型隨機變量,並深入探討瞭它們的概率質量函數(PMF)和概率密度函數(PDF)。關鍵內容包括期望、方差、矩等描述性統計量,以及分布函數的性質。 第三章 重要的概率分布: 本章係統梳理瞭最常用和理論上最重要的概率分布。離散型包括伯努利分布、二項分布、泊鬆分布,及其在計數過程中的應用。連續型則重點講解瞭均勻分布、指數分布、正態分布(高斯分布)——並深入分析瞭其在自然界和工程中的普遍性及其在中心極限定理中的關鍵作用。同時,本章也會介紹復閤分布和混閤分布的概念。 第四章 多維隨機變量: 擴展到兩個或多個隨機變量同時齣現的情況。核心在於聯閤分布、邊際分布的計算,以及協方差和相關係數對變量間綫性關係的度量。條件期望和條件分布的引入,為迴歸分析的初步概念做瞭鋪墊。 第五章 隨機變量的極限定理: 這是概率論的升華部分,連接瞭理論與實際推斷。詳細闡述瞭切比雪夫不等式和馬爾可夫不等式,並著重推導和分析瞭大數定律(強大數與弱大數),證明瞭樣本均值收斂的理論基礎。中心極限定理(CLT)的證明和應用是本章的重中之重,它解釋瞭為什麼正態分布在統計學中占據核心地位。 第二部分:數理統計——從數據中獲取信息 基於概率論的紮實基礎,本部分開始關注如何利用有限的樣本數據對未知總體進行科學推斷。 第六章 樣本與抽樣分布: 講解統計推斷的原材料——樣本的概念。區分簡單隨機抽樣、獨立同分布(i.i.d.)的意義。重點分析瞭幾個至關重要的抽樣分布,特彆是樣本均值和樣本方差的分布,包括卡方分布 ($chi^2$)、$t$ 分布和 $F$ 分布的構造原理及其在推斷中的具體用途。 第七章 參數估計: 統計推斷的核心任務之一。本章細緻比較瞭兩種主要的點估計方法:矩估計法(Method of Moments, MOM) 和 極大似然估計法(Maximum Likelihood Estimation, MLE)。對於估計量的優良性(無偏性、有效性、一緻性)進行瞭詳細的闡述和評估。隨後,係統講解瞭區間估計的構建,包括均值、方差和比例的置信區間的推導與實際應用,重點講解瞭置信水平的含義。 第八章 假設檢驗: 統計推斷的另一核心支柱。本章從邏輯上界定瞭原假設與備擇假設,顯著性水平、檢驗統計量、拒絕域和 $p$ 值的概念。詳細講解瞭針對單個和兩個樣本的均值、方差和比例的三大類基礎假設檢驗(Z檢驗、t檢驗、卡方檢驗)。本章強調瞭第一類錯誤和第二類錯誤的權衡。 第九章 方差分析(ANOVA)與非參數檢驗導論: 擴展到多組均值比較的場景,介紹瞭方差分析的基本思想(基於平方和的分解),以及單因素和雙因素方差分析的原理與應用。為應對不滿足正態性或方差齊性假設的情況,本部分引入瞭非參數檢驗的初步概念,如符號檢驗和秩和檢驗。 第十章 統計中的迴歸分析基礎: 本章是連接統計與建模的橋梁。重點介紹一元綫性迴歸模型,包括最小二乘法的推導,迴歸係數的估計、顯著性檢驗(F檢驗和t檢驗),以及模型的擬閤優度(決定係數 $R^2$)。同時,引入瞭殘差分析的重要性,以評估模型的適用性。 配套特色與教學輔助: 1. 豐富的習題與解析: 每章後配有大量不同難度的習題,旨在鞏固理論理解並訓練計算能力。部分章節提供詳細的計算步驟和模型建立思路。 2. 計算工具結閤: 書中穿插瞭使用主流統計軟件(如R語言或SPSS的描述性統計應用)的示例,幫助讀者理解理論在實際數據分析中的落地方式,但側重點依然放在公式的推導和原理的理解上。 3. 圖示化學習: 采用大量的分布函數圖形、概率密度麯綫圖和散點圖,直觀展示隨機變量的特性和推斷過程的邏輯。 4. 嚴謹的數學推導: 在保持教學友好性的同時,對核心定理(如中心極限定理、MLE的性質)進行瞭完整的、可追溯的數學推導,滿足對理論深度有要求的讀者。 總結: 《概率論基礎與數理統計》是一本旨在培養“統計思維”的教材。它要求讀者不僅掌握計算公式,更要理解這些公式背後的概率邏輯和統計假設。通過本書的學習,讀者將能夠自信地處理隨機現象,並運用科學的統計方法對復雜數據進行有效的建模與決策。