内容简介
Probability Theory、Probability Spaces and Random Elements、σ-fields and measures、Measurable functions and distributions、Integration and Differentiation、Integration、Radon.Nikodym derivative、Distributions and Their Characteristics、Distributions and probability densities、Moments and moment inequalities、Moment generating and characteristic functions、onditional Expectations、Conditional expectations、Independence、Conditional distributions、Markov chains and martingales、Asymptotic Theory、Convergence modes and stochastic orders等等。
内页插图
目录
Preface to the First Edition
Preface to the Second Edition
Chapter 1.Probability Theory
1.1 Probability Spaces and Random Elements
1.1.1σ-fields and measures
1.1.2 Measurable functions and distributions
1.2 Integration and Differentiation
1.2.1 Integration
1.2.2 Radon.Nikodym derivative
1.3 Distributions and Their Characteristics
1.3.1 Distributions and probability densities
1.3.2 Moments and moment inequalities
1.3.3 Moment generating and characteristic functions
1.4 Conditional Expectations
1.4.1 Conditional expectations
1.4.2 Independence
1.4.3 Conditional distributions
1.4.4 Markov chains and martingales
1.5 Asymptotic Theory
1.5.1 Convergence modes and stochastic orders
1.5.2 Weak convergence
1.5.3 Convergence of transformations
1.5.4 The law of large numbers
1.5.5 The central limit theorem
1.5.6 Edgeworth and Cornish-Fisher expansions
1.6 Exercises
Chapter 2. Fundamentals of Statistics
2.1 Populations,Samples,and Models
2.1.1 Populations and samples
2.1.2 Parametric and nonparametric models
2.1.3 Exponential and location.scale families
2.2 Statistics.Sufficiency,and Completeness
2.2.1 Statistics and their distributions
2.2.2 Sufficiency and minimal sufficiency
2.2.3 Complete statistics
2.3 Statistical Decision Theory
2.3.1 Decision rules,lOSS functions,and risks
2.3.2 Admissibility and optimality
2.4 Statistical Inference
2.4.1 P0il)t estimators
2.4.2 Hypothesis tests
2.4.3 Confidence sets
2.5 Asymptotic Criteria and Inference
2.5.1 Consistency
2.5.2 Asymptotic bias,variance,and mse
2.5.3 Asymptotic inference
2.6 Exercises
Chapter 3.Unbiased Estimation
3.1 The UMVUE
3.1.1 Sufficient and complete statistics
3.1.2 A necessary and.sufficient condition
3.1.3 Information inequality
3.1.4 Asymptotic properties of UMVUEs
3.2 U-Statistics
3.2.1 Some examples
3.2.2 Variances of U-statistics
3.2.3 The projection method
3.3 The LSE in Linear Models
3.3.1 The LSE and estimability
3.3.2 The UMVUE and BLUE
3.3.3 R0bustness of LSEs
3.3.4 Asymptotic properties of LSEs
3.4 Unbiased Estimators in Survey Problems
3.4.1 UMVUEs of population totals
3.4.2 Horvitz-Thompson estimators
3.5 Asymptotically Unbiased Estimators
3.5.1 Functions of unbiased estimators
3.5.2 The method ofmoments
3.5.3 V-statistics
3.5.4 The weighted LSE
3.6 Exercises
Chapter 4.Estimation in Parametric Models
4.1 Bayes Decisions and Estimators
4.1.1 Bayes actions
4.1.2 Empirical and hierarchical Bayes methods
4.1.3 Bayes rules and estimators
4.1.4 Markov chain Mollte Carlo
4.2 Invariance......
4.2.1 One-parameter location families
4.2.2 One-parameter seale families
4.2.3 General location-scale families
4.3 Minimaxity and Admissibility
4.3.1 Estimators with constant risks
4.3.2 Results in one-parameter exponential families
4.3.3 Simultaneous estimation and shrinkage estimators
4.4 The Method of Maximum Likelihood
4.4.1 The likelihood function and MLEs
4.4.2 MLEs in generalized linear models
4.4.3 Quasi-likelihoods and conditional likelihoods
4.5 Asymptotically Efficient Estimation
4.5.1 Asymptotic optimality
4.5.2 Asymptotic efficiency of MLEs and RLEs
4.5.3 Other asymptotically efficient estimators
4.6 Exercises
Chapter 5.Estimation in Nonparametric Models
5.1 Distribution Estimators
5.1.1 Empirical C.d.f.s in i.i.d.cases
5.1.2 Empirical likelihoods
5.1.3 Density estimation
5.1.4 Semi-parametric methods
5.2 Statistical Functionals
5.2.1 Differentiability and asymptotic normality
5.2.2 L-.M-.and R-estimators and rank statistics
5.3 Linear Functions of Order Statistics
5.3.1 Sample quantiles
5.3.2 R0bustness and efficiency
5.3.3 L-estimators in linear models
5.4 Generalized Estimating Equations
5.4.1 The GEE method and its relationship with others
5.4.2 Consistency of GEE estimators
5.4.3 Asymptotic normality of GEE estimators
5.5 Variance Estimation
5.5.1 The substitution.method
5.5.2 The jackknife
5.5.3 The bootstrap
5.6 Exercises
Chapter 6.Hypothesis Tests
6.1 UMP Tests
6.1.1 The Neyman-Pearson lemma
6.1.2 Monotone likelihood ratio
6.1.3 UMP tests for two-sided hypotheses
6.2 UMP Unbiased Tests
6.2.1 Unbiasedness,similarity,and Neyman structure
6.2.2 UMPU tests in exponential families
6.2.3 UMPU tests in normal families
……
Chapter 7 Confidence Sets
References
List of Notation
List of Abbreviations
Index of Definitions,Main Results,and Examples
Author Index
Subject Index
前言/序言
This book is intended for a course entitled Mathematical Statistics offered at the Department of Statistics,University of Wisconsin.Madison.This course,taught in a mathematically rigorous fashion,covers essential materials in statistical theory that a first or second year graduate student typicallY needs to learn as preparation for work on a Ph.D.degree in statistics.The course is designed for two 15-week semesters.with three lecture hours and two discussion hours in each week. Students in this course are assumed to have a good knowledge of advanced calgulus.A course in real analy.sis or measure theory prior to this course is often recommended.Chapter 1 provides a quick overview of important concepts and results in measure-theoretic probability theory that are used as tools in mathematical statistics.Chapter 2 introduces some fundamental concepts in statistics,including statistical models.the principle of SUfIlciency in data reduction,and two statistical approaches adopted throughout the book: statistical decision theory and statistical inference.
Each of Chapters 3 through 7 provides a detailed study of an important topic in statistical decision theory and inference:Chapter 3 introduces the theory of unbiased estimation;Chapter 4 studies theory and methods in point estimation ander parametric models;Chapter 5 covers point estimation in nonparametric settings;Chapter 6 focuses on hypothesis testing;and Chapter 7 discusses interval estimation and confidence sets.The classical frequentist approach is adopted in this book.although the Bayesian approach is also introduced (§2.3.2,§4.1,§6.4.4,and§7.1.3).Asymptotic(1arge sample)theory,a crucial part of statistical inference,is studied throughout the book,rather than in a separate chapter.
About 85%of the book covers classical results in statistical theory that are typically found in textbooks of a similar level.These materials are in the Statistics Department’S Ph.D.qualifying examination syllabus.
好的,这是一份关于《概率论基础与数理统计》(可以假设这是另一本与您提到的英文版教材不同、但主题相关的中文教材)的详细图书简介,内容将侧重于其涵盖的范围和特色,而不涉及您提供的英文原著内容。 --- 图书简介:《概率论基础与数理统计》(第X版) 定位与目标读者: 本书旨在为理工科、经济管理类以及统计学专业本科生提供一套全面、系统且深入浅出的概率论与数理统计的入门与进阶教材。它不仅严格构建了概率论的数学基础,更侧重于培养读者将统计思想应用于实际问题分析的能力。全书内容覆盖了从基础概率模型到现代统计推断方法的完整知识体系,特别适合作为高等数学学习之后的后续专业基础课程教材,或作为自学统计学原理的参考读物。 内容结构与核心章节详解: 本书的结构清晰,逻辑严密,共分为概率论基础和数理统计两大核心部分,确保知识点的循序渐进。 第一部分:概率论基础——随机现象的量化描述 本部分是全书的基石,旨在建立读者对随机性的数学化理解和精确描述能力。 第一章 随机事件与概率: 引入集合论的基本概念,为随机事件的描述打下基础。重点讲解了古典概型、几何概型,并详述了条件概率、事件的独立性、以及著名的乘法定理与全概率公式、贝叶斯公式。本章强调概率公理体系的严谨性,并辅以大量生活和工程中的实例说明如何正确应用这些基本公式。 第二章 随机变量及其分布: 首次系统介绍随机变量这一核心工具。详细区分了离散型和连续型随机变量,并深入探讨了它们的概率质量函数(PMF)和概率密度函数(PDF)。关键内容包括期望、方差、矩等描述性统计量,以及分布函数的性质。 第三章 重要的概率分布: 本章系统梳理了最常用和理论上最重要的概率分布。离散型包括伯努利分布、二项分布、泊松分布,及其在计数过程中的应用。连续型则重点讲解了均匀分布、指数分布、正态分布(高斯分布)——并深入分析了其在自然界和工程中的普遍性及其在中心极限定理中的关键作用。同时,本章也会介绍复合分布和混合分布的概念。 第四章 多维随机变量: 扩展到两个或多个随机变量同时出现的情况。核心在于联合分布、边际分布的计算,以及协方差和相关系数对变量间线性关系的度量。条件期望和条件分布的引入,为回归分析的初步概念做了铺垫。 第五章 随机变量的极限定理: 这是概率论的升华部分,连接了理论与实际推断。详细阐述了切比雪夫不等式和马尔可夫不等式,并着重推导和分析了大数定律(强大数与弱大数),证明了样本均值收敛的理论基础。中心极限定理(CLT)的证明和应用是本章的重中之重,它解释了为什么正态分布在统计学中占据核心地位。 第二部分:数理统计——从数据中获取信息 基于概率论的扎实基础,本部分开始关注如何利用有限的样本数据对未知总体进行科学推断。 第六章 样本与抽样分布: 讲解统计推断的原材料——样本的概念。区分简单随机抽样、独立同分布(i.i.d.)的意义。重点分析了几个至关重要的抽样分布,特别是样本均值和样本方差的分布,包括卡方分布 ($chi^2$)、$t$ 分布和 $F$ 分布的构造原理及其在推断中的具体用途。 第七章 参数估计: 统计推断的核心任务之一。本章细致比较了两种主要的点估计方法:矩估计法(Method of Moments, MOM) 和 极大似然估计法(Maximum Likelihood Estimation, MLE)。对于估计量的优良性(无偏性、有效性、一致性)进行了详细的阐述和评估。随后,系统讲解了区间估计的构建,包括均值、方差和比例的置信区间的推导与实际应用,重点讲解了置信水平的含义。 第八章 假设检验: 统计推断的另一核心支柱。本章从逻辑上界定了原假设与备择假设,显著性水平、检验统计量、拒绝域和 $p$ 值的概念。详细讲解了针对单个和两个样本的均值、方差和比例的三大类基础假设检验(Z检验、t检验、卡方检验)。本章强调了第一类错误和第二类错误的权衡。 第九章 方差分析(ANOVA)与非参数检验导论: 扩展到多组均值比较的场景,介绍了方差分析的基本思想(基于平方和的分解),以及单因素和双因素方差分析的原理与应用。为应对不满足正态性或方差齐性假设的情况,本部分引入了非参数检验的初步概念,如符号检验和秩和检验。 第十章 统计中的回归分析基础: 本章是连接统计与建模的桥梁。重点介绍一元线性回归模型,包括最小二乘法的推导,回归系数的估计、显著性检验(F检验和t检验),以及模型的拟合优度(决定系数 $R^2$)。同时,引入了残差分析的重要性,以评估模型的适用性。 配套特色与教学辅助: 1. 丰富的习题与解析: 每章后配有大量不同难度的习题,旨在巩固理论理解并训练计算能力。部分章节提供详细的计算步骤和模型建立思路。 2. 计算工具结合: 书中穿插了使用主流统计软件(如R语言或SPSS的描述性统计应用)的示例,帮助读者理解理论在实际数据分析中的落地方式,但侧重点依然放在公式的推导和原理的理解上。 3. 图示化学习: 采用大量的分布函数图形、概率密度曲线图和散点图,直观展示随机变量的特性和推断过程的逻辑。 4. 严谨的数学推导: 在保持教学友好性的同时,对核心定理(如中心极限定理、MLE的性质)进行了完整的、可追溯的数学推导,满足对理论深度有要求的读者。 总结: 《概率论基础与数理统计》是一本旨在培养“统计思维”的教材。它要求读者不仅掌握计算公式,更要理解这些公式背后的概率逻辑和统计假设。通过本书的学习,读者将能够自信地处理随机现象,并运用科学的统计方法对复杂数据进行有效的建模与决策。