内容简介
This book is aimed at postgraduate students in applied mathematics as well as at engineering and physics students with a firm background in mathematics. The first four chapters can be used as the material for a first course on inverse problems with a focus on computational and statistical aspects. On the other hand, Chapters 3 and 4, which discuss statistical and nonstationary inversion methods, can be used by students already having knowldege of classical inversion methods.
There is rich literature, including numerous textbooks, on the classical aspects of inverse problems. From the numerical point of view, these books concentrate on problems in which the measurement errors are either very small or in,which the error properties are known exactly. In real world problems, however, the errors are seldom very small and their properties in the deterministic sense are not well known. For example, in classical literature the error norm is usually assumed to be a known real number. In reality, the error norm is a random variable whose mean might be known.
内页插图
目录
Preface
1 Inverse Problems and Interpretation of Measurements
1.1 Introductory Examples
1.2 Inverse Crimes
2 Classical Regularization Methods
2.1 Introduction: Fredholm Equation
2.2 Truncated Singular Value Decomposition
2.3 Tikhonov Regularization
2.3.1 Generalizations of the Tikhonov Regularization
2.4 Regularization by Truncated Iterative Methods
2.4.1 Landweber-Fridman Iteration
2.4.2 Kaczmarz Iteration and ART
2.4.3 Krylov Subspace Methods
2.5 Notes and Comments
3 Statistical Inversion Theory
3.1 Inverse Problems and Bayes' Formula
3.1.1 Estimators
3.2 Construction of the Likelihood Function
3.2.1 Additive Noise
3.2.2 Other Explicit Noise Models
3.2.3 Counting Process Data
3.3 Prior Models
3.3.1 Gaussian Priors
3.3.2 Impulse Prior Densities
3.3.3 Discontinuities
3.3.4 Markov Random Fields
3.3.5 Sample-based Densities
3.4 Gaussian Densities
3.4.1 Gaussian Smoothness Priors
3.5 Interpreting the Posterior Distribution
3.6 Markov Chain Monte Carlo Methods
3.6.1 The Basic Idea
3.6.2 Metropolis-Hastings Construction of the Kernel
3.6.3 Gibbs Sampler
3.6.4 Convergence
3.7 Hierarcical Models
3.8 Notes and Comments
4 Nonstationary Inverse Problems
4.1 Bayesian Filtering
4.1.1 A Nonstationary Inverse Problem
4.1.2 Evolution and Observation Models
4.2 Kalman Filters
4.2.1 Linear Gaussian Problems
4.2.2 Extended Kalman Filters
4.3 Particle Filters
4.4 Spatial Priors
4.5 Fixed-lag and Fixed-interval Smoothing
4.6 Higher-order Markov Models
4.7 Notes and Comments
5 Classical Methods Revisited
5.1 Estimation Theory
5.1.1 Maximum Likelihood Estimation
5.1.2 Estimators Induced by Bayes Costs
5.1.3 Estimation Error with Affine Estimators
5.2 Test Cases
5.2.1 Prior Distributions
5.2.2 Observation Operators
5.2.3 The Additive Noise Models
5.2.4 Test Problems
5.3 Sample-Based Error Analysis
5.4 Truncated Singular Value Decomposition
5.5 Conjugate Gradient.Iteration
5.6 Tikhonov Regularization
5.6.1 Prior Structure and Regularization Level
5.6.2 Misspeeification of the Gaussian Observation Error Model
5.6.3 Additive Cauchy Errors
5.7 Diseretization and Prior Models
5.8 Statistical Model Reduction, Approximation Errors and Inverse Crimes
5.8.1 An Example: Full Angle Tomography and CGNE
5.9 Notes and Comments
6 Model Problems
6.1 X-ray Tomography
6.1.1 Radon Transform
6.1.2 Discrete Model
6.2 Inverse Source Problems
6.2.1 Quasi-static Maxwell's Equations
6.2.2 Electric Inverse Source Problems
6.2.3 Magnetic Inverse Source Problems
6.3 Impedance Tomography
6.4 Optical Tomography
6.4.1 The Radiation Transfer Equation
6.4.2 Diffusion Approximation
6.4.3 Time-harmonic Measurement
6.5 Notes and Comments
7 Case Studies
7.1 Image Deblurring and Recovery of Anomalies
7.1.1 The Model Problem
7.1.2 Reduced and Approximation Error Models
7.1.3 Sampling the Posterior Distribution
7.1.4 Effects of Modelling Errors
7.2 Limited Angle Tomography: Dental X-ray Imaging
7.2.1 The Layer Estimation
7.2.2 MAP Estimates
7.2.3 Sampling: Gibbs Sampler
7.3 Biomagnetic Inverse Problem: Source Localization
7.3.1 Reconstruction with Gaussian White Noise Prior Model
7.3.2 Reconstruction of Dipole Strengths with the e1-prior Model
7.4 Dynamic MEG by Bayes Filtering
7.4.1 A Single Dipole Model
7.4.2 More Realistic Geometry
7.4.3 Multiple Dipole Models
7.5 Electrical Impedance Tomography: Optimal Current Patterns
7.5.1 A Posteriori Synthesized Current Patterns
7.5.2 Optimization Criterion
7.5.3 Numerical Examples
7.6 Electrical Impedance Tomography: Handling Approximation Errors
7.6.1 Meshes and Projectors
7.6.2 The Prior Distribution and the Prior Model
7.6.3 The Enhanced Error Model
7.6.4 The MAP Estimates
7.7 Electrical Impedance Process Tomography
7.7.1 The Evolution Model
7.7.2 The Observation Model and the Computational Scheme
7.7.3 The Fixed-lag State Estimate
7.7.4 Estimation of the Flow Profile
7.8 Optical Tomography in Anisotropic Media
7.8.1 The Anisotropy Model
7.8.2 Linearized Model
7.9 Optical Tomography: Boundary Recovery
7.9.1 The General Elliptic Case
7.9.2 Application to Optical Diffusion Tomography
7.10 Notes and Comments
A Appendix: Linear Algebra and Functional Analysis
A.1 Linear Algebra
A.2 Functional Analysis
A.3 Sobolev Spaces
B Appendix 2: Basics on Probability
B.1 Basic Concepts
B.2 Conditional Probabilities
References
Index
前言/序言
好的,这是一本假设的、与《统计和计算逆问题》主题完全无关的图书简介。 --- 图书名称:《行星地质学的奥秘:从岩石样本到系外生命信号》 内容简介 本书深入探索了行星地质学的前沿领域,旨在为读者提供一个全面而深入的视角,理解我们太阳系乃至更广阔宇宙中岩石天体的形成、演化、内部结构及其潜在宜居性。我们不再将行星仅仅视为遥远的球体,而是通过对实地采集的样本、高精度遥感数据以及先进的行星模拟模型的综合分析,揭示其深层地质过程和化学指纹。 第一部分:行星物质的起源与分类 本书伊始,我们将追溯太阳系形成初期的物质来源。聚焦于微行星体和太阳星云的化学成分,探讨了原始星子如何通过吸积过程形成岩石行星的内核、地幔和地壳。详细分析了地球、月球、火星以及水星等类地行星在冷却和分异过程中的关键差异。 岩石样本的精细分析: 阐述了利用质谱仪、电子显微镜和X射线衍射等技术对阿波罗月岩、火星陨石以及“信天翁号”任务带回的样本进行的同位素定年和矿物学研究。重点讨论了如何通过岩石中的微量元素分布来重建其母体的热演化历史。 磁场与内部动力学: 深入解析了行星磁场的生成机制,特别是关于地球外核的液态铁流动与发电机效应。对比了火星早期磁场的消失对其大气侵蚀的影响,并探讨了水星极地永久阴影区中可能存在的挥发性物质的储存机制,这些都与行星深层热演化息息相关。 第二部分:表面过程与地貌演化 行星表面是记录地质活动最直接的档案库。本部分着重于撞击、火山活动、构造运动和风化作用如何塑造了不同天体的景观。 撞击坑动力学: 建立了撞击事件对行星表面进行的时间标记和热力学影响模型。我们分析了小行星和彗星撞击的能量传递效率,以及由此产生的冲击变质岩(Impactites)的结构特征。特别讨论了月球和水星上保存完好的古老撞击盆地,它们是研究早期太阳系轰击历史的窗口。 构造与火山形变: 考察了行星构造活动的不同形式。火星上的奥林匹斯山和水手谷展示了地壳拉张和火山巨型化的极端案例。对比之下,金星密集的火山流和地表重塑事件,暗示了其独特的全球性构造“重表化”(Resurfacing)周期。书中详细介绍了如何利用立体成像技术对这些构造特征进行高程建模和应力场分析。 风化与侵蚀: 探讨了由太阳风、辐射和微小陨石流在行星表面产生的风化作用。在没有大气保护的月球和水星上,表岩屑层(Regolith)的物理和化学性质发生了显著变化,这些变化对未来原位资源利用(ISRU)构成了重要挑战。 第三部分:冰冻世界与地下海洋的探索 近年来,对太阳系外围冰封卫星的兴趣激增,它们被认为是寻找地外生命的潜在前沿阵地。 冰壳的力学与热力学: 分析了木卫二(欧罗巴)和土卫二(恩克拉多斯)冰层下的复杂结构。研究了潮汐力如何驱动冰层裂缝的形成和内部热量的传递,从而维持地下液态水的存在。书中包含了对冰层裂缝(Lineae)的流体动力学模拟,解释了羽流(Plume)的喷发机制。 次表层化学环境: 重点讨论了如何通过分析羽流中的挥发性物质,如水蒸气、盐类和有机分子,来推断地下海洋的盐度和化学平衡。我们审视了深海热液喷口理论在这些冰卫星上的适用性,以及这些环境如何可能支持微生物生命。 第四部分:系外行星地质学的推断 我们将研究的尺度扩展到太阳系之外,探讨如何仅凭遥感数据对系外行星的地质状态进行推断。 大气光谱与地表特征的关联: 介绍如何利用詹姆斯·韦伯太空望远镜等观测设施获取的系外行星大气光谱数据,反演其地表温度分布、火山气体排放特征(如SO2或CO2的丰度)以及可能的冰水覆盖范围。 宜居性与地质活动性: 讨论了地质活动性(如板块构造或持续火山活动)对维持长期宜居环境的重要性,因为它们能驱动碳循环和调节气候。通过对比超级地球和类地行星的密度差异,推测了其内部物质组成和岩石圈厚度,从而评估其长期地质稳定性的潜力。 本书内容严格基于对实际观测数据和实验室实验的分析,专注于岩石、矿物、构造和热力学过程,为行星科学家、地质学家和天体物理学的学生提供了一套扎实的理论框架和前沿案例研究。它是一部关于宇宙中物质如何组织和演化的严谨论述。