计算流体动力学导论:有限体积法(第2版)(英文版) [An Introduction To Computational Fluid Dynamics:The Finite Volume Method pdf epub mobi txt 电子书 下载 2024

图书介绍


计算流体动力学导论:有限体积法(第2版)(英文版) [An Introduction To Computational Fluid Dynamics:The Finite Volume Method

简体网页||繁体网页
[美] 费斯泰赫 著



点击这里下载
    

想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-13


类似图书 点击查看全场最低价

出版社: 世界图书出版公司
ISBN:9787510005572
版次:1
商品编码:10104524
包装:平装
外文名称:An Introduction To Computational Fluid Dynamics:The Finite Volume Method Second Edition
开本:16开
出版时间:2010-04-01
用纸

计算流体动力学导论:有限体积法(第2版)(英文版) [An Introduction To Computational Fluid Dynamics:The Finite Volume Method epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

相关图书



计算流体动力学导论:有限体积法(第2版)(英文版) [An Introduction To Computational Fluid Dynamics:The Finite Volume Method epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

计算流体动力学导论:有限体积法(第2版)(英文版) [An Introduction To Computational Fluid Dynamics:The Finite Volume Method pdf epub mobi txt 电子书 下载



具体描述

内容简介

  We were pleasantly surprised by the ready acceptance of the first edition of our book by the CFD community and by the amount of positive feedback received over a period of 10 years. To us this has provided justification of our original plan, which was to provide an accessible introduction to this fast-growing topic to support teaching at senior undergraduate level, post- graduate research and new industrial users of commercial CFD codes. Our second edition seeks to enhance and update. The structure and didactic approach of the first edition have been retained without change, but aug- mented by a selection of the most important developments in CFD.

内页插图

目录

Preface
Acknowledgements
1 Introduction
1.1 What is CFD?
1.2 How does a CFD code work?
1.3 Problem solving with CFD
1.4 Scope of this book

2 Conservation laws of fluid motion and boundary conditions
2.1 Governing equations of fluid flow and heat transfer
2.2 Equations of state
2.3 Navier-Stokes equations for a Newtonian fluid
2.4 Conservative form of the governing equations of fluid flow
2.5 Differential and integral forms of the general transport equations
2.6 Classification of physical behaviours
2.7 The role of characteristics in hyperbolic equations
2.8 Classification method for simple PDEs
2.9 Classification of fluid flow equations
2.10 Auxiliary conditions for viscous fluid flow equations
2.11 Problems in transonic and supersonic compressible flows
2.12 Summary

3 Turbulence and its modelling
3.1 What is turbulence?
3.2 Transition from laminar to turbulent }low
3.3 Descriptors of turbulent flow
3.4 Characteristics of simple turbulent flows
3.5 The effect of turbulent fluctuations on properties of the mean flow
3.6 Turbulent flow calculations
3.7 Reynolds-averaged Navier-Stokes equations and classical turbulence models
3.8 Large eddy simulation
3.9 Direct numerical simulation
3.10 Summary

4 The finite volume method for diffusion problems
4.1 Introduction
4.2 Finite volume method for one-dimensional steady state diffusion
4.3 Worked examples: one-dimensional steady state diffusion
4.4 Finite volume method for two-dimensional diffusion problems
4.5 Finite volume method for three-dimensional diffusion problems
4.6 Summary

5 The finite volume method for convection-diffusion problems
5.1 Introduction
5.2 Steady one-dimensional convection and diffusion
5.3 The central differencing scheme
5.4 Properties of discretisation schemes
5.5 Assessment of the central differencing scheme for convectiondiffusion problems
5.6 The upwind differencing scheme
5.7 The hybrid differencing scheme
5.8 The power-law scheme
5.9 Higher-order differencing schemes for convection-diffusion problems
5.10 TVD schemes
5.11 Summary

6 Solution algorithms for pressure-velocity
6.1 Introduction
6.2 The staggered grid
6.3 The momentum equations
6.4 The SIMPLE algorithm
6.5 Assembly ora complete method
6.6 The SIMPLER algorithm
6.7 The SIMPLEC algorithm
6.8 The PISO algorithm
6.9 General comments on SIMPLE, SIMPLER, SIMPLEC and PISO
6.10 Worked examples of the SIMPLE algorithm
6.11 Summary

7 Solution of discretised equations
7.1 Introduction
7.2 The TDMA
7.3 Application of the TDMA to two-dimensional problems
7.4 Application of the TDMA to three-dimensional problems
7.5 Examples
7.6 Point4terative methods
7.7 Multigrid techniques
7.8 Summary

8 the finite volume method for unsteady flows
8.1 Introduction
8.2 One-dimensional unsteady heat conduction
8.3 Illustrative examples
8.4 Implicit method for two- and three-dimensional problems
8.5 Discretisation of transient convection-diffusion equation
8.6 Worked example of transient convection-diffusion using QUICK differencing
8.7 Solution procedures for unsteady flow calculations
8.8 Steady state calculations using the pseudo-transient approach
8.9 A brief note on other transient schemes
8.10 Summary

9 Implementation of boomfary confftions
9.1 Introduction
9.2 Inlet boundary conditions
9.3 Outlet boundary conditions
9.4 Wall boundary conditions
9.5 The constant pressure boundary condition
9.6 Symmetry boundary condition
9.7 Periodic or cyclic boundary condition
9.8 Potential pitfalls and final remarks

10 Errors and uncertainty in CFD modelling
10.1 Errors and uncertainty in CFD
10.2 Numerical errors
10.3 Input uncertainty
10.4 Physical model uncertainty
10.5 Verification and validation
10,6 Guidelines for best practice in CFD
10.7 Reporting/documentation of CFD simulation inputs and results
10.8 Summary

11 Methods for dealing with complex geometries
11.1 Introduction
11.2 Body-fitted co.ordinate grids for complex geometries
11.3 Catesian vs. curvilinear grids - an example
11.4 Curvilinear grids - difficulties
11.5 Block-structured grids
11.6 Unstructured grids
11.7 Discretisation in unstructured grids
11.8 Discretisafion of the diffusion term
11.9 Discretisafion of the convective term
11.10 Treatment of source terms
11.11 Assembly of discretised equations
11.12 Example calculations with unstructured grids
11.13 Pressure-velocity coupling in unstructured meshes
11.14 Staggered vs. co-located grid arrangements
11.15 Extension of the face velocity interpolation method to unstructured meshes
11.16 Summary

12 CFD modelling of combustion
12.1 Introduction
12.2 Application of the first law of thermodynamics to a combustion system
12.3 Enthalpy of formation
12.4 Some important relationships and properties of gaseous mixtures
12.5 Stoichiometry
12.6 Equivalence ratio
12.7 Adiabatic flame temperature
12.8 Equilibrium and dissociation
12.9 Mechanisms of combustion and chemical kinetics
12.10 Overall reactions and intermediate reactions
12.11 Reaction rate
12.12 Detailed mechanisms
12.13 Reduced mechanisms
12.14 Governing equations for combusting flows
12.15 The simple chemical reacting system (SCRS)
12.16 Modelling of a laminar diffusion flame - an example
12.17 CFD calculation of turbulent non-premixed combustion
12.18 SCRS model for turbulent combustion
12.19 Probability density function approach
12.20 Beta pdf
12.21 The chemical equilibrium model
12.22 Eddy break-up model of combustion
12.23 Eddy dissipation concept
12.24 Laminar flamelet model
12.25 Generation oflaminar, flamelet libraries
12.26 Statistics of the non-equilibrium parameter
12.27 Pollutant formation in combustion
12.28 Modelling of thermal NO formation in combustion
12.29 Flamelet-based NO modelling
12.30 An example to illustrate laminar flamelet modelling and NO modelling of a turbulent flame
12.31 Other models for non-premixed combustion
12.32 Modelling ofpremixed combustion
12.33 Summary

13 Numedcal calculation of radiative heat transfer
13.1 Introduction
13.2 Governing equations of radiative heat transfer
13.3 Solution methods
13.4 Four popular radiation calculation techniques suitable for CFD
13.5 Illustrative examples
13.6 Calculation of radiative properties in gaseous mixtures
13.7 Summary

Appendix A Accuracy of a flow simulation
Appendix B Non-uniform grids
Appendix C Calculation of source terms
Appendix D Limiter functions used in Chapter 5
Appendix E Derivation of one-dimensional governing equations for steady, incompressible flow through a planar nozzle
Appendix F Alternative derivation for the term (n . grad Ai) in Chapter 11
Appendix G Some examples
Bibliography
Index

精彩书摘

  The discussion of the k-e turbulence model, to which we return later, the material in Chapters 2 and 3 is largely self-contained. This allows the use of this book by those wishing tO concentrate principally on the numerical algorithms, but requiring an overview of the fluid dynamics and the math- ematics behind it for occasional reference in the same text.
  The second part of the book is devoted to the numerical algorithms of the finite volume method and covers Chapters 4 to 9. Discretisation schemes and solution procedures for steady flows are discussed in Chapters 4 to 7. Chapter 4 describes the basic approach and derives the central difference scheme for diffusion phenomena. In Chapter 5 we emphasise the key prop- erties of discretisation schemes, conservativeness, boundedness and trans- portiveness, which are used as a basis for the further development of the upwind, hybrid, QUICK and TVD scheme 计算流体动力学导论:有限体积法(第2版)(英文版) [An Introduction To Computational Fluid Dynamics:The Finite Volume Method 电子书 下载 mobi epub pdf txt

计算流体动力学导论:有限体积法(第2版)(英文版) [An Introduction To Computational Fluid Dynamics:The Finite Volume Method pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

看起来,挺不错,还可以,可购买的。?

评分

流体动力学中的经典之作,为结构风工程努力

评分

自营送货快

评分

这本书挺好的,价格也不算贵,送货快

评分

评分

不错,很好用,推荐购买

评分

孩子翻了翻,说不错。

评分

儿子要的,我看不到咯

评分

好书

类似图书 点击查看全场最低价

计算流体动力学导论:有限体积法(第2版)(英文版) [An Introduction To Computational Fluid Dynamics:The Finite Volume Method pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


计算流体动力学导论:有限体积法(第2版)(英文版) [An Introduction To Computational Fluid Dynamics:The Finite Volume Method  bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.coffeedeals.club All Rights Reserved. 静流书站 版权所有